Model Configuration and Experiments

Introduction to Machine Learning - GIF-7015
Professor: Christian Gagné
Week 14
14.1 Algorithms evaluation and comparison

Algorithms evaluation and comparison

- Performance evaluation problem
- How to evaluate the performance of a classification algorithm for a given problem (for generalization)?
- Big difference between the performance on the training and testing dataset
- Performance comparison problem
- How to evaluate if an algorithm performs better than another for a given problem?
- Different types of comparisons are possible
- Different algorithms
- Same algorithm, different hyperparameters
- Same algorithm, different data representations
- Repetition of the necessary measures for statistical validity
- Random partitioning for training/validation
- Learning process with variable results
- Stochastic algorithm
- Algorithm sensitive to the choice of hyperparameters (e.g. σ and C values of the SVM)

Charlatans example (Jensen and Cohen, 2000)

- Evaluation of an investment advisor
- Each day, the advisor must predict whether stock prices will rise or fall.
- Test: predict stock prices for 14 days
- Selection criteria: correct prediction for 11 days or more
- Charlatan makes random predictions $(0.5 / 0.5)$
- Charlatan therefore has a probability of 0.0287 of passing the test.
- Good test to evaluate an advisor's performance
- But is not suitable for choosing an advisor from n candidates.
- Probability that a charlatan among n passes the test: $1-(1-0.0287)^{n}$.
- For $n=10$, probability ≈ 0.253; for $n=30$, probability ≈ 0.583.
- For a high value of n, it is almost certain that charlatans will pass the test, even if they do not do better than chance!

R
D. Jensen, P. Cohen, Multiple Comparisons in Induction Algorithms, Machine Learning, n° 38, p. 309-338, 2000.

Pathologies in learning

- Overfitting
- Add superfluous elements to the model (learn by heart)
- Low value of C with SVM, too many support vectors
- Discovering non-existent relationships between data
- Overtraining: learning false links between data
- Making more complex models that offer no advantage
- Errors in the selection of discriminating information
- Bias in the algorithm favors certain types of data
- Parametric classification with multivariate normal distribution and diagonal covariance matrix: bias towards discrimination of independent variables
- Sensitivity to the prior probabilities of the data (classes balance)
- Sensitivity to feature selection
- Oversearching
- Searching in very large model spaces
- Solution: first, simple model spaces, then, increase complexity
- Similar to increasing the value of n with the example of charlatans
- Solution: tighten the selection criteria when n increases

Factors to consider (1/2)

- Difficult to generalize any conclusions made on a particular problem to other problems
- No Free Lunch theorem!
- Good algorithm for a problem: compatibility between the inductive bias and the problem
- Partitioning the dataset into training/validation subsets for testing only
- Good for evaluation/comparison of performance in algorithm generalization
- Good for choosing hyperparameters
- Once the choice of algorithms/hyperparameters is made: use of the entire dataset for training

Factors to consider (2/2)

- Validation subset is part of the inference data
- Choice of hyperparameter or stopping criteria
- Each use of the validation set integrates information into the learning algorithm
- Final performance evaluation on a separate test set, never used in the learning phase
- Other criteria for evaluation and comparison of algorithms
- Other risk measures, other loss functions
- Complexity of training (time and space)
- Complexity of the evaluation (time and space)
- Interpretability of results
- Ease of programming
14.2 Design of experiments

Experiments

- Experimentation: test or series of tests where we play with factors modifying the output
- Choice of the learning algorithm
- Training dataset
- Data characteristics
- General objectives
- Identify the most influential factors
- Eliminate the least important factors
- Determine the configuration of the factors giving the best results
- Learning objectives
- Statistically significant results (eliminate effect of chance)
- Better performance for generalization
- Reduced complexity (time and space)
- Robustness

Experimental process

- Controllable factors: elements we want to study
- Uncontrollable factors: elements over which we do not have control, but for which we want to minimize impact on decisions

Experimentation strategies

- Possible experimentation strategies
- By intuition: experimentation based on the operator's intuition
- One factor at a time: starting configuration, testing all values of one factor separately
- Grid search: test all combinations

Grid search

- Grid search: adjustment of pairs (or triplets) of hyperparameters, with measurement on validation set

1. Partition the dataset \mathcal{X} into two subsets, \mathcal{X}_{T} and \mathcal{X}_{V} (usually $50 \%-50 \%$)
2. Train summarily the classifier with \mathcal{X}_{T} for each pair of hyperparameters considered
3. Select the pair of hyperparameters for which the error is minimal on \mathcal{X}_{V}
4. Use this pair of hyperparameters for training on the whole set \mathcal{X}

- Applicable for all pairs of hyperparameters for which the combined effect is important for the training of classifiers

Random search

- Select hyperparameter values randomly
- Allows a better exploration of space in the presence of variables with no influence

Random Layout

Important parameter

From J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol. 13, 2012.
Available online at https://www.jmlr.org/papers/v13/bergstra12a.html.

- Possible refinement: use of quasi-random numbers
- Deterministic sequence with uniformly distributed values for each dimension
14.3 Optimization for
hyperparameter adjustment

Model-based sequential optimization

- Idea: Build learning models to estimate performance
- Regression of a function $f(\mathbf{x})$ which gives the estimated performance according to hyperparameters \mathbf{x}
- Estimating the uncertainty of predictions in hyperparameter space
- Commonly used model: Gaussian processes
- Random process generating a normal distribution for each value of \mathbf{x}
- Exploration-exploitation compromise: selection of future hyperparameters \mathbf{x} to be evaluated
- Exploitation: select value of \mathbf{x} with good performance
- Exploration: test new value of \mathbf{x} to acquire more information on the function to be optimized
- Acquisition function to determine the next value of \mathbf{x}
- Typical function Upper Confidence Bound: $\operatorname{argmax}_{\mathrm{x}} \mu(\mathbf{x})+\sigma(\mathbf{x})$
- Re-estimate regression function with evaluation of the next value

Bayesian optimization

From B. Shahriari, K. Swersky, Z. Wang, R.P. Adams and N. De Freitas, Taking the human out of the loop: A review of bayesian optimization, Proceedings of the IEEE, vol. 104, no. 1, 2016. Available online at https://doi.org/10.1109/JPROC.2015.2494218

AutoML

- AutoML: automate machine learning
- Allow the use of these techniques by non-experts
- Allow deployment in unknown situations, with minimal intervention
- Enable adaptation of models to operating conditions
- Choice of models and pre-processing
- Beyond the choice of hyperparameters, which model to use?
- SVM, neural networks, k-nearest neighbours, linear models, AdaBoost, random forests, etc.
- Refine model configuration
- Number of hidden layers, core function, distance measurement, etc.
- What pre-processing to do with the data?
- Normalization, standardization, feature selection, etc.
- Apart from hyperparameter optimization, another research topic
- No universal models
- Computing resources required can be very large
- Dataset size limits the possible scope of model search
14.4 Organization of experimental plans

Basic principles for planning experiments

- Randomize: the order of execution of the experiments must be randomized, in order to ensure independence in the results
- E.g.: a machine that requires a certain time to be at the right temperature
- Generally not a problem when experimenting with software
- Reproduce: average the results of several experiments with the same values of controllable factors, to eliminate the effect of uncontrollable factors
- For learning: run the same algorithm with different samples of the dataset (e.g. cross-validation)
- Block: reduce or avoid nuisance factors, which influence the output results, without being of interest
- For learning: compare algorithms using the same data samples (same subsets)

Directives for experimentation with learning

1. Setting the study objective

- Estimate the error of a method on a particular problem (error below a given value)
- Comparing two algorithms on the same problem (is one algorithm better than the other?)

2. Select the response variable

- Classification error or quadratic error in regression
- Arbitrary loss function, risk measurement, accuracy, recall, complexity, etc

3. Choice of factors and levels

- Hyperparameter values
- Learning algorithms
- Datasets

4. Choice of the experimentation plan

- Make a factorial design, unless you are sure there are no interactions
- Number of replications for the experiments is inversely proportional to the size of the datasets (variance of results according to size)
- Avoid synthetic datasets to assess performance

Directives for experimentation with learning

5. Performing the experiments

- Do some preliminary executions to make sure everything is going as planned
- For resource-intensive experiments, backup intermediate states (checkpoints)
- Experiments must be reproducible
- Make honest comparisons, being fair towards the different approaches tested

6. Perform a statistical analysis of the data

- Ensure that results are not subjective or a product of chance
- Testing statistical hypotheses: is the error of A significantly lower than B ?

7. Conclusions and recommendations

- Once data has been obtained and analyzed, draw objective conclusions
- Frequent conclusions: need to do more experiments!
- Proceed iteratively: don't invest all the resources for making a single set of experiments
14.5 Manipulating datasets

Partitioning and stratification

- Ideal case: partitioning dataset \mathcal{X} into K separate pairs of training and validation datasets
- Requires huge datasets
- Solution: make several subsets of the same dataset

$$
\left\{\mathcal{T}_{i}, \mathcal{V}_{i}\right\}_{i=1}^{K}
$$

- Trade-off between datasets size and overlap
- Big datasets allow better inference of classifiers
- Big overlap between datasets gives non-statistically independent measures
- Partitioning with stratification
- Respecting the prior probabilities when partitioning into training/validation datasets
- Avoids variations due to algorithm bias related to proportions between classes

Effect of the training dataset size

- For real problems, it is common that the error rates in training and testing follow power laws

$$
\begin{aligned}
E_{\text {train }} & =E_{\text {Bayes }}-\frac{b}{N^{\beta}} \\
E_{\text {test }} & =E_{\text {Bayes }}+\frac{a}{N^{\alpha}}
\end{aligned}
$$

where $a, b, \alpha \geq 1$ and $\beta \geq 1$ depend on the classifier and the problem

- With large datasets, error rates tend to be towards the optimal Bayesian rate.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} E_{\text {train }} & =E_{\text {Bayes }} \\
\lim _{N \rightarrow \infty} E_{\text {test }} & =E_{\text {Bayes }}
\end{aligned}
$$

Training and testing rate as a function of N

Rate under test as a function of N

K-fold cross-validation

- K-fold cross-validation
- Training dataset divided into K disjointed subsets, $\mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \cdots \cup \mathcal{X}_{K}=\mathcal{X}$
- K training on \mathcal{T}_{i} and evaluation on $\mathcal{V}_{i}, i=1, \ldots, K$

$$
\begin{array}{ll}
\mathcal{V}_{1}=\mathcal{X}_{1} & \mathcal{T}_{1}=\mathcal{X}_{2} \cup \mathcal{X}_{3} \cup \cdots \cup \mathcal{X}_{K} \\
\mathcal{V}_{2}=\mathcal{X}_{2} & \mathcal{T}_{2}=\mathcal{X}_{1} \cup \mathcal{X}_{3} \cup \cdots \cup \mathcal{X}_{K}
\end{array}
$$

$$
\mathcal{V}_{K}=\mathcal{X}_{K} \quad \mathcal{T}_{K}=\mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \cdots \cup \mathcal{X}_{K-1}
$$

- Average performance over $\mathcal{V}_{i}, i=1, \ldots, K$
- $(K-2) / K$ of data shared by each pair of training sets (statistical non-independence of the results)
- Leave-one-out: $K=N$
- Training on $N-1$ data, performance on one data (repeated N times)
- Useful for algorithms with reduced or no training times (e.g. k-PPV), or very small datasets

5×2 cross-validation

- 5×2 cross-validation
- Divide dataset \mathcal{X} into two equal disjoint subsets $\mathcal{X}_{1}^{(1)}$ et $\mathcal{X}_{1}^{(2)}$
- Train on $\mathcal{T}_{1}=\mathcal{X}_{1}^{(1)}$ and evaluate on $\mathcal{V}_{1}=\mathcal{X}_{1}^{(2)}$
- Repeat with training on $\mathcal{T}_{2}=\mathcal{X}_{1}^{(2)}$ and evaluation on $\mathcal{V}_{2}=\mathcal{X}_{1}^{(1)}$
- Repeat five times for a total of 10 trainings/evaluations

$$
\begin{array}{cc}
\mathcal{T}_{1}=\mathcal{X}_{1}^{(1)} & \mathcal{V}_{1}=\mathcal{X}_{1}^{(2)} \\
\mathcal{T}_{2}=\mathcal{X}_{1}^{(2)} & \mathcal{V}_{2}=\mathcal{X}_{1}^{(1)} \\
\mathcal{T}_{3}=\mathcal{X}_{2}^{(1)} & \mathcal{V}_{3}=\mathcal{X}_{2}^{(2)} \\
\mathcal{T}_{4}=\mathcal{X}_{2}^{(2)} & \mathcal{V}_{4}=\mathcal{X}_{2}^{(1)} \\
\vdots & \vdots \\
\mathcal{T}_{9}=\mathcal{X}_{5}^{(1)} & \mathcal{V}_{9}=\mathcal{X}_{5}^{(2)} \\
\mathcal{T}_{10}=\mathcal{X}_{5}^{(2)} & \mathcal{V}_{10}=\mathcal{X}_{5}^{(1)}
\end{array}
$$

- More than five repetitions: too many dependencies between datasets
- Less than ten results: not enough samples to estimate a distribution and do statistical tests

Bootstrapping

- Bootstrapping: sampling with replacement
- Generate training set by sampling N data with replacement among N data of the original set
- Validation on a different training set, generated in the same way
- Repeat as many times as necessary to evaluate performance
- Probability to sample a data is $1 / N$
- For dataset of N data, probability that a given data is not drawn

$$
\left(1-\frac{1}{N}\right)^{N} \approx e^{-1}=0.368
$$

- Approximately 63.2% of original data present in sampled set
- Greater dependency between sampled datasets than with cross-validation
- Still excellent for evaluating performance with small datasets
- Also good for evaluating the stability of an algorithm
14.6 Error measurements and ROC curves

Error measurement and confusion matrix

- Confusion matrix: explanation of the errors made

	Decision	
Truth	1	0
1	$\|T P\|$	$\|F N\|$
0	$\|F P\|$	$\|T N\|$

- Error rate redefinition: $E=\frac{|F N|+|F P|}{N}$
- With $N=|T P|+|F P|+|T N|+|F N|$
- Weighting by type of error (variable costs)

$$
E=\frac{c_{F N}|F N|+c_{F P}|F P|}{N}
$$

- Direct generalization to K classes

ROC curves

- ROC curve (receiver operator characteristics)
- Rate of correct decisions

$$
\frac{|T P|}{|T P|+|F N|}
$$

- False alarm rate

$$
\frac{|F P|}{|F P|+|T N|}
$$

- Different acceptance thresholds give different operation points on the curve

ROC curves for classification

ROC CURVE

ROC curve decision threshold

AUC-ROC, sensitivity and specificity

- Area under the ROC (AUC-ROC) curve: threshold-independent performance measurement
- Ability of the classifier to properly discriminate two classes for all thresholds
- Similarity with nonparametric Wilcoxon-Mann-Whitney test
- Sensitivity: number of correctly identified positives

$$
\text { sensibility }=\frac{|T P|}{|T P|+|F P|}
$$

- Specificity: number of correctly identified negatives

$$
\text { specificity }=\frac{|T N|}{|T N|+|F N|}=1-\frac{|F P|}{|T N|+|F N|}
$$

Precision and recall

- Searching for information in databases
- Extracted entries following a query: positive
- Relevant entries for a query: true positives + false negatives
- Accuracy: \# relevant extracted entries by \# extracted entries

$$
\text { precision }=\frac{|T P|}{|T P|+|F P|}
$$

- Accuracy of 1: extracted entries all relevant, but may remain false negatives
- Equivalent to sensitivity
- Recall: \# elevant entries extracted by \# relevant entries

$$
\text { recall }=\frac{|T P|}{|T P|+|F N|}
$$

- Recall of 1: all relevant entries are retrieved, but there may be irrelevant (false positive) entries retrieved.

Precision and recall

14.7 Confidence interval and statistical laws

Confidence interval

- Estimator (e.g. maximum likelihood): a value of a parameter
- Confidence interval: the range of plausible values of a parameter, for a given confidence threshold.
- Based on the underlying probability density of the estimator
- Example: estimation of mean μ of a normal distribution from samples $\mathcal{X}=\left\{x^{t}\right\}_{t=1}^{N}$
- Estimation by average of samples: $m=\sum_{t} x^{t} / N$
- m is a sum of normal variables, and thus also normal, $m \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$
- According to the normal law, we therefore have confidence at 95% that $\mu \in[m-1.96 \sigma / \sqrt{N}, m+1.96 \sigma / \sqrt{N}]$

$$
P\left(m-1.96 \frac{\sigma}{\sqrt{N}}<\mu<m+1.96 \frac{\sigma}{\sqrt{N}}\right)=0.95
$$

Confidence interval

- Law \mathcal{Z} : normal law of null mean and unit variance, $\mathcal{Z} \equiv \mathcal{N}(0,1)$
- General formalization of confidence interval for normal law: $Z \sim \mathcal{Z}, P\left(Z>z_{\alpha}\right)=\alpha, \alpha \in[0,1]$
- Normal law of null mean is symmetrical
- Single bound: $P\left(-z_{\alpha}<Z\right)=1-\alpha, P\left(Z<z_{\alpha}\right)=1-\alpha, \alpha \in[0,1]$
- Double bounds: $P\left(-z_{0.5 \alpha}<Z<z_{0.5 \alpha}\right)=1-\alpha, \alpha \in[0,1]$
- Estimation of sample mean $m \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$, implies

$$
\begin{aligned}
\sqrt{N} \frac{m-\mu}{\sigma} & \sim \mathcal{Z} \\
P\left(m-z_{\alpha} \frac{\sigma}{\sqrt{N}}<\mu\right) & =1-\alpha \\
P\left(\mu<m+z_{\alpha} \frac{\sigma}{\sqrt{N}}\right) & =1-\alpha
\end{aligned}
$$

- If $Z_{i} \sim \mathcal{Z}$ are independent random variables, and

$$
X=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2}
$$

then X follows a law from χ^{2} with n degrees of freedom, $X \sim \chi_{n}^{2}$

- Expected value of $\mathbb{E}[X]=n$ and variance $\operatorname{Var}(X)=2 n$
- For a sampling $x^{t} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- Variance estimate: $s^{2}=\frac{\sum_{t}\left(x^{t}-m\right)^{2}}{N-1}$
- $(N-1) \frac{s^{2}}{\sigma^{2}} \sim \chi_{N-1}^{2}$
- χ^{2} Law is excellent for performing statistical tests on several random variables according to normal laws
- For example, several estimates of a classification rate

Student's Law

- Student's Law: suitable for testing on normal distributions where there are few samples.
- If $Z \sim \mathcal{Z}$ and $X \sim \chi_{n}^{2}$ are independent, then $T_{n} \sim t_{n}$, follows a Student's Law with n degrees of freedom

$$
T_{n}=\frac{Z}{\sqrt{X / n}}
$$

- With large n, the distribution has a shape similar to a normal distribution of mean equal to 0
- Expected value $\mathbb{E}\left[T_{n}\right]=0$, variance $\operatorname{Var}\left(T_{n}\right)=\frac{n}{n-2}$, pour $n>2$
14.8 Statistical tests

Hypothesis testing

- Hypothesis testing: classic method for testing the statistical validity of results
- Assuming that a random variable follows a certain density law
- Estimate the probability that the variable meets the hypothesis based on the statistics obtained from the measurements
- If the probability is sufficiently high, the test is positive (null hypothesis verified)
- t-test (Student's Law)
- Difference between true mean μ_{0} and mean m from N samples, having a variance s, follows a Student's Law with $N-1$ degrees of freedom

$$
\frac{\sqrt{N}\left(m-\mu_{0}\right)}{s} \sim t_{N-1}
$$

- Hypothesis verified with probability $1-\alpha$ when:

$$
\frac{\sqrt{N}\left(m-\mu_{0}\right)}{s} \in\left[-t_{0.5 \alpha, N-1}, t_{0.5 \alpha, N-1}\right]
$$

Paired t-test

- Using the t-test for K-fold cross-validation
- K error percentages p_{i} on validation sets $\mathcal{V}_{i}, i=1, \ldots, K$

$$
p_{i}=\frac{\sum_{\mathbf{x}^{t} \in \mathcal{V}_{i}} \mathbb{I}\left(r^{t}, \mathrm{~h}\left(\mathbf{x}^{t} \mid \mathcal{T}_{i}\right)\right)}{N}
$$

- Mean and variance of results with K-fold cross-validation

$$
m=\frac{\sum_{i=1}^{K} p_{i}}{K}, \quad s^{2}=\frac{\sum_{i=1}^{K}\left(p_{i}-m\right)^{2}}{K-1}
$$

- Paired t-test performed according to

$$
\frac{\sqrt{K}\left(m-p_{0}\right)}{s} \sim t_{K-1}
$$

where p_{0} is the error rate verified by the hypothesis test

- So, error rate less than p_{0} with probability $1-\alpha$ if next test is positive

$$
\frac{\sqrt{K}\left(m-p_{0}\right)}{s}<t_{\alpha, K-1}
$$

Paired t-test for results comparison

- Comparison of two algorithms trained with K-fold cross-validation
- p_{i}^{1} : classification error on \mathcal{V}_{i} of the first algorithm trained on \mathcal{T}_{i}
- p_{i}^{2} : classification error on \mathcal{V}_{i} of the second algorithm trained on \mathcal{T}_{i}
- Difference of the classification error on fold $i: p_{i}=p_{i}^{1}-p_{i}^{2}$
- Hypothesis test: mean value of p_{i} is null
- Mean and variance of the error difference

$$
m=\frac{\sum_{i=1}^{K} p_{i}}{K}, \quad s^{2}=\frac{\sum_{i=1}^{K}\left(p_{i}-m\right)^{2}}{K-1}
$$

- The error difference p_{i} follows a Student's Law with $K-1$ degrees of freedom

$$
\frac{\sqrt{K}(m-0)}{s}=\frac{\sqrt{K} m}{s} \sim t_{K-1}
$$

- Algorithm with statistically identical performance, with probability $1-\alpha$, if next test is positive

$$
\frac{\sqrt{K} m}{s} \in\left[-t_{0.5 \alpha, K-1}, t_{0.5 \alpha, K-1}\right]
$$

Analysis of variance (ANOVA)

- ANOVA: comparing several classification algorithms
- How to compare L algorithms, each trained and tested on K pairs of different subsets?
- Assuming that each result $E_{i, j}$ follows a normal distribution of mean

$$
E_{i, j} \sim \mathcal{N}\left(\mu_{j}, \sigma^{2}\right), i=1, \ldots, K, j=1, \ldots, L
$$

- Average μ_{j} unknown and different for each algorithm
- Variance σ^{2} shared by all folds/algorithms
- Hypothesis H_{0} : all averages μ_{j} are equal

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{L}
$$

- ANOVA approach: two different estimators of σ^{2}
- First estimator of σ^{2} valid only when H_{0} is true
- Second estimator of σ^{2} valid no matter how valid H_{0} is

First estimator of σ^{2} with ANOVA

- First estimator of $\sigma^{2}: H_{0}$ is valid
- Average by algorithm on K folds: $m_{j}=\frac{\sum_{i=1}^{K} e_{i, j}}{K}$
- Mean and variance of the m_{j}

$$
m=\frac{\sum_{j=1}^{L} m_{j}}{L}, \quad s^{2}=\frac{\sum_{j=1}^{L}\left(m_{j}-m\right)^{2}}{L-1}
$$

- Estimator of σ^{2}

$$
\hat{\sigma}^{2}=K s^{2}=K \frac{\sum_{j=1}^{L}\left(m_{j}-m\right)^{2}}{L-1}
$$

- As each m_{j} follows a normal law, we can say

$$
\frac{(L-1) s^{2}}{\sigma^{2} / K}=\frac{K \sum_{j=1}^{L}\left(m_{j}-m\right)^{2}}{\sigma^{2}} \sim \chi_{L-1}^{2}
$$

- By posing $S_{b} \equiv K \sum_{j=1}^{L}\left(m_{j}-m\right)^{2}$, we get H_{0} is valid when

$$
\frac{S_{b}}{\sigma^{2}} \sim \chi_{L-1}^{2}
$$

Second estimator of σ^{2} with ANOVA

- Second estimator of σ^{2} : independent of validity of H_{0}
- σ^{2} : mean of the variance s_{j}^{2} of the algorithms

$$
\begin{aligned}
s_{j}^{2} & =\frac{\sum_{i=1}^{K}\left(e_{i, j}-m_{j}\right)^{2}}{K-1} \\
\hat{\sigma}^{2} & =\sum_{j=1}^{L} \frac{s_{j}^{2}}{L}=\sum_{j=1}^{L} \sum_{i=1}^{K} \frac{\left(e_{i, j}-m_{j}\right)^{2}}{L(K-1)}
\end{aligned}
$$

- By posing $S_{w} \equiv \sum_{j=1}^{L} \sum_{i=1}^{K}\left(e_{i, j}-m_{j}\right)^{2}$

$$
(K-1) \sum_{j=1}^{K} \frac{s_{j}^{2}}{\sigma^{2}}=(K-1) \sum_{j=1}^{K} \frac{\sum_{i=1}^{K}\left(e_{i, j}-m_{j}\right)^{2}}{(K-1) \sigma^{2}}=\frac{S_{w}}{\sigma^{2}} \sim \chi_{L(K-1)}^{2}
$$

ANOVA

- Fisher's law: ratio of two independent χ^{2} laws

$$
F_{n, m}=\frac{X_{1} / n}{X_{2} / m}, \quad \text { où } X_{1} \sim \chi_{n}^{2} \text { et } X_{2} \sim \chi_{m}^{2}
$$

- ANOVA: reject hypothesis H_{0} if the two estimators of σ^{2} differ significantly

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{L} \\
& \frac{\frac{S_{b} / \sigma^{2}}{L-1}}{\frac{S_{w} / \sigma^{2}}{L(K-1)}}=\frac{S_{b} /(L-1)}{S_{w} /(L(K-1))}=\frac{L(K-1)}{L-1} \frac{S_{b}}{S_{w}} \sim F_{L-1, L(K-1)}
\end{aligned}
$$

- Therefore, hypothesis that average classification rates are equal for all algorithms is valid at a probability $1-\alpha$ when

$$
\frac{L(K-1)}{L-1} \frac{S_{b}}{S_{w}}<F_{\alpha, L-1, L(K-1)}
$$

14.9 Python tools for experimentation

Python tools for experimentation

- sklearn.model_selection.cross_val_score: K-fold cross-validation
- scipy.stats.ttest_rel and scipy.stats.ttest_ind: t-test, paired or independent
- scipy.stats.f_oneway: analysis of variance (ANOVA)
- seaborn.boxplot: graphical comparison of several results (requires Seaborn library)

From https://seaborn.pydata.org/generated/seaborn.boxplot.html

- Auto-sklearn: AutoML with scikit-learn
https://automl.github.io/auto-sklearn/master/

