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14.1 Algorithms evaluation and

comparison



Algorithms evaluation and comparison

• Performance evaluation problem
• How to evaluate the performance of a classification algorithm for a given problem

(for generalization)?

• Big difference between the performance on the training and testing dataset

• Performance comparison problem
• How to evaluate if an algorithm performs better than another for a given problem?

• Different types of comparisons are possible

• Different algorithms

• Same algorithm, different hyperparameters

• Same algorithm, different data representations

• Repetition of the necessary measures for statistical validity
• Random partitioning for training/validation

• Learning process with variable results

• Stochastic algorithm

• Algorithm sensitive to the choice of hyperparameters (e.g. σ and C values of the

SVM) 1



Charlatans example (Jensen and Cohen, 2000)

• Evaluation of an investment advisor
• Each day, the advisor must predict whether stock prices will rise or fall.

• Test: predict stock prices for 14 days

• Selection criteria: correct prediction for 11 days or more

• Charlatan makes random predictions (0.5/0.5)

• Charlatan therefore has a probability of 0.0287 of passing the test.

• Good test to evaluate an advisor’s performance

• But is not suitable for choosing an advisor from n candidates.
• Probability that a charlatan among n passes the test: 1− (1− 0.0287)n.

• For n = 10, probability ≈ 0.253; for n = 30, probability ≈ 0.583.

• For a high value of n, it is almost certain that charlatans will pass the test, even if

they do not do better than chance!

D. Jensen, P. Cohen, Multiple Comparisons in Induction Algorithms, Machine

Learning, no 38, p. 309–338, 2000.
2



Pathologies in learning

• Overfitting
• Add superfluous elements to the model (learn by heart)

• Low value of C with SVM, too many support vectors

• Discovering non-existent relationships between data

• Overtraining: learning false links between data

• Making more complex models that offer no advantage

• Errors in the selection of discriminating information
• Bias in the algorithm favors certain types of data

• Parametric classification with multivariate normal distribution and diagonal covariance

matrix: bias towards discrimination of independent variables

• Sensitivity to the prior probabilities of the data (classes balance)

• Sensitivity to feature selection

• Oversearching
• Searching in very large model spaces

• Solution: first, simple model spaces, then, increase complexity

• Similar to increasing the value of n with the example of charlatans

• Solution: tighten the selection criteria when n increases 3



Factors to consider (1/2)

• Difficult to generalize any conclusions made on a particular problem to other
problems

• No Free Lunch theorem!

• Good algorithm for a problem: compatibility between the inductive bias and the

problem

• Partitioning the dataset into training/validation subsets for testing only

• Good for evaluation/comparison of performance in algorithm generalization

• Good for choosing hyperparameters

• Once the choice of algorithms/hyperparameters is made: use of the entire dataset

for training
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Factors to consider (2/2)

• Validation subset is part of the inference data

• Choice of hyperparameter or stopping criteria

• Each use of the validation set integrates information into the learning algorithm

• Final performance evaluation on a separate test set, never used in the learning phase

• Other criteria for evaluation and comparison of algorithms

• Other risk measures, other loss functions

• Complexity of training (time and space)

• Complexity of the evaluation (time and space)

• Interpretability of results

• Ease of programming
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14.2 Design of experiments



Experiments

• Experimentation: test or series of tests where we play with factors modifying the
output

• Choice of the learning algorithm

• Training dataset

• Data characteristics

• General objectives

• Identify the most influential factors

• Eliminate the least important factors

• Determine the configuration of the factors giving the best results

• Learning objectives

• Statistically significant results (eliminate effect of chance)

• Better performance for generalization

• Reduced complexity (time and space)

• Robustness
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Experimental process

• Controllable factors: elements we want to

study

• Uncontrollable factors: elements over

which we do not have control, but for

which we want to minimize impact on

decisions

SystemInputs

Controllable
factors

Uncontrollable
factors

Outputs
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Experimentation strategies

• Possible experimentation strategies

• By intuition: experimentation based on the operator’s intuition

• One factor at a time: starting configuration, testing all values of one factor separately

• Grid search: test all combinations

f1

f2

Best guess

f1

f2

One factor at the time

f1

f2

Grid search
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Grid search

• Grid search: adjustment of pairs (or triplets) of hyperparameters, with
measurement on validation set

1. Partition the dataset X into two subsets, XT and XV (usually 50%-50%)

2. Train summarily the classifier with XT for each pair of hyperparameters considered

3. Select the pair of hyperparameters for which the error is minimal on XV

4. Use this pair of hyperparameters for training on the whole set X
• Applicable for all pairs of hyperparameters for which the combined effect is

important for the training of classifiers
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Random search

• Select hyperparameter values randomly

• Allows a better exploration of space in the presence of variables with no influence

BERGSTRA AND BENGIO
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

From J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol. 13, 2012.

Available online at https://www.jmlr.org/papers/v13/bergstra12a.html .

• Possible refinement: use of quasi-random numbers

• Deterministic sequence with uniformly distributed values for each dimension
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14.3 Optimization for

hyperparameter adjustment



Model-based sequential optimization

• Idea: Build learning models to estimate performance

• Regression of a function f(x) which gives the estimated performance according to

hyperparameters x

• Estimating the uncertainty of predictions in hyperparameter space

• Commonly used model: Gaussian processes

• Random process generating a normal distribution for each value of x

• Exploration-exploitation compromise: selection of future hyperparameters x to be
evaluated

• Exploitation: select value of x with good performance

• Exploration: test new value of x to acquire more information on the function to be

optimized

• Acquisition function to determine the next value of x
• Typical function Upper Confidence Bound: argmaxx µ(x) + σ(x)

• Re-estimate regression function with evaluation of the next value

11



Bayesian optimization

Algorithm 1: Bayesian optimization

1: for n ¼ 1; 2; . . . ; do
2: select new xnþ1 by optimizing acquisition function !

xnþ1 ¼ arg max
x

!ðx;DnÞ

3: query objective function to obtain ynþ1

4: augment data Dnþ1 ¼ fDn; ðxnþ1; ynþ1Þg
5: update statistical model
6: end for

One problem with this minimum expected risk
framework is that the true sequential risk, up to the
full evaluation budget, is typically computationally
intractable. This has led to the introduction of many
myopic heuristics known as acquisition functions, e.g.,
Thompson sampling (TS), probability of improvement,
expected improvement (EI), upper confidence bounds,
and entropy search (ES). These acquisition functions
trade off exploration and exploitation; their optima are

located where the uncertainty in the surrogate model is
large (exploration) and/or where the model prediction is
high (exploitation). Bayesian optimization algorithms
then select the next query point by maximizing such
acquisition functions. Naturally, these acquisition func-
tions are often even more multimodal and difficult to
optimize, in terms of querying efficiency, than the
original black-box function f . Therefore, it is critical
that the acquisition functions be cheap to evaluate or
approximate: cheap in relation to the expense of
evaluating the black box f . Since acquisition functions
have analytical forms that are easy to evaluate or at least
approximate, it is usually much easier to optimize them
than the original objective function.

A. Paper Overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that
we aim to disentangle the multiple components that
determine the success of Bayesian optimization imple-
mentations. In particular, we focus on statistical modeling

Fig. 1. Illustration of the Bayesian optimization procedure over three iterations. The plots show the mean and confidence intervals estimated with

a probabilistic model of the objective function. Although the objective function is shown, in practice, it is unknown. The plots also show the

acquisition functions in the lower shaded plots. The acquisition is high where the model predicts a high objective (exploitation) and where the

prediction uncertainty is high (exploration). Note that the area on the far left remains unsampled, as while it has high uncertainty, it is correctly

predicted to offer little improvement over the highest observation [27].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

150 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

From B. Shahriari, K. Swersky, Z. Wang, R.P. Adams and N. De Freitas, Taking the human out of the loop: A review of bayesian optimization,

Proceedings of the IEEE, vol. 104, no. 1, 2016. Available online at https://doi.org/10.1109/JPROC.2015.2494218 .
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AutoML

• AutoML: automate machine learning
• Allow the use of these techniques by non-experts

• Allow deployment in unknown situations, with minimal intervention

• Enable adaptation of models to operating conditions

• Choice of models and pre-processing
• Beyond the choice of hyperparameters, which model to use?

• SVM, neural networks, k-nearest neighbours, linear models, AdaBoost, random

forests, etc.

• Refine model configuration

• Number of hidden layers, core function, distance measurement, etc.

• What pre-processing to do with the data?

• Normalization, standardization, feature selection, etc.

• Apart from hyperparameter optimization, another research topic
• No universal models

• Computing resources required can be very large

• Dataset size limits the possible scope of model search 13



14.4 Organization of experimental

plans



Basic principles for planning experiments

• Randomize: the order of execution of the experiments must be randomized, in
order to ensure independence in the results

• E.g.: a machine that requires a certain time to be at the right temperature

• Generally not a problem when experimenting with software

• Reproduce: average the results of several experiments with the same values of
controllable factors, to eliminate the effect of uncontrollable factors

• For learning: run the same algorithm with different samples of the dataset (e.g.

cross-validation)

• Block: reduce or avoid nuisance factors, which influence the output results,
without being of interest

• For learning: compare algorithms using the same data samples (same subsets)

14



Directives for experimentation with learning

1. Setting the study objective
• Estimate the error of a method on a particular problem (error below a given value)

• Comparing two algorithms on the same problem (is one algorithm better than the

other?)

2. Select the response variable
• Classification error or quadratic error in regression

• Arbitrary loss function, risk measurement, accuracy, recall, complexity, etc

3. Choice of factors and levels
• Hyperparameter values

• Learning algorithms

• Datasets

4. Choice of the experimentation plan
• Make a factorial design, unless you are sure there are no interactions

• Number of replications for the experiments is inversely proportional to the size of the

datasets (variance of results according to size)

• Avoid synthetic datasets to assess performance
15



Directives for experimentation with learning

5. Performing the experiments

• Do some preliminary executions to make sure everything is going as planned

• For resource-intensive experiments, backup intermediate states (checkpoints)

• Experiments must be reproducible

• Make honest comparisons, being fair towards the different approaches tested

6. Perform a statistical analysis of the data

• Ensure that results are not subjective or a product of chance

• Testing statistical hypotheses: is the error of A significantly lower than B?

7. Conclusions and recommendations

• Once data has been obtained and analyzed, draw objective conclusions

• Frequent conclusions: need to do more experiments!

• Proceed iteratively: don’t invest all the resources for making a single set of

experiments

16



14.5 Manipulating datasets



Partitioning and stratification

• Ideal case: partitioning dataset X into K separate pairs of training and validation
datasets

• Requires huge datasets

• Solution: make several subsets of the same dataset

{Ti ,Vi}Ki=1

• Trade-off between datasets size and overlap

• Big datasets allow better inference of classifiers

• Big overlap between datasets gives non-statistically independent measures

• Partitioning with stratification

• Respecting the prior probabilities when partitioning into training/validation datasets

• Avoids variations due to algorithm bias related to proportions between classes

17



Effect of the training dataset size

• For real problems, it is common that the error rates in training and testing follow

power laws

Etrain = EBayes −
b

Nβ

Etest = EBayes +
a

Nα

where a, b, α ≥ 1 and β ≥ 1 depend on the classifier and the problem

• With large datasets, error rates tend to be towards the optimal Bayesian rate.

lim
N→∞

Etrain = EBayes

lim
N→∞

Etest = EBayes

18



Training and testing rate as a function of N

N

E

Etest

Etrain
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Rate under test as a function of N

N

Etest
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K -fold cross-validation

• K -fold cross-validation

• Training dataset divided into K disjointed subsets, X1 ∪ X2 ∪ · · · ∪ XK = X
• K training on Ti and evaluation on Vi , i = 1, . . . ,K

V1 = X1 T1 = X2 ∪ X3 ∪ · · · ∪ XK

V2 = X2 T2 = X1 ∪ X3 ∪ · · · ∪ XK

...
...

VK = XK TK = X1 ∪ X2 ∪ · · · ∪ XK−1

• Average performance over Vi , i = 1, . . . ,K

• (K − 2)/K of data shared by each pair of training sets (statistical non-independence

of the results)

• Leave-one-out: K = N

• Training on N − 1 data, performance on one data (repeated N times)

• Useful for algorithms with reduced or no training times (e.g. k-PPV), or very small

datasets

21



5× 2 cross-validation

• 5× 2 cross-validation
• Divide dataset X into two equal disjoint subsets X (1)

1 et X (2)
1

• Train on T1 = X (1)
1 and evaluate on V1 = X (2)

1

• Repeat with training on T2 = X (2)
1 and evaluation on V2 = X (1)

1

• Repeat five times for a total of 10 trainings/evaluations
T1 = X (1)

1 V1 = X (2)
1

T2 = X (2)
1 V2 = X (1)

1

T3 = X (1)
2 V3 = X (2)

2

T4 = X (2)
2 V4 = X (1)

2
...

...

T9 = X (1)
5 V9 = X (2)

5

T10 = X (2)
5 V10 = X (1)

5

• More than five repetitions: too many dependencies between datasets

• Less than ten results: not enough samples to estimate a distribution and do

statistical tests
22



Bootstrapping

• Bootstrapping: sampling with replacement

• Generate training set by sampling N data with replacement among N data of the

original set

• Validation on a different training set, generated in the same way

• Repeat as many times as necessary to evaluate performance

• Probability to sample a data is 1/N

• For dataset of N data, probability that a given data is not drawn(
1− 1

N

)N

≈ e−1 = 0.368

• Approximately 63.2 % of original data present in sampled set

• Greater dependency between sampled datasets than with cross-validation

• Still excellent for evaluating performance with small datasets

• Also good for evaluating the stability of an algorithm
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14.6 Error measurements and

ROC curves



Error measurement and confusion matrix

• Confusion matrix: explanation of the errors made

Decision

Truth 1 0

1 |TP| |FN|
0 |FP| |TN|

• Error rate redefinition: E = |FN|+|FP|
N

• With N = |TP|+ |FP|+ |TN|+ |FN|
• Weighting by type of error (variable costs)

E =
cFN |FN|+ cFP |FP|

N

• Direct generalization to K classes

24



ROC curves

• ROC curve (receiver operator
characteristics)

• Rate of correct decisions

|TP|
|TP|+ |FN|

• False alarm rate

|FP|
|FP|+ |TN|

• Different acceptance thresholds give

different operation points on the curve
By BOR, CC-BY-SA 3.0,

https://commons.wikimedia.org/wiki/File:Roccurves.png.
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ROC curves for classification

By MartinThoma, public domain, https://commons.wikimedia.org/wiki/File:Roc-draft-xkcd-style.svg. 26
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ROC curve decision threshold

TP
FN TN

FP
TP

FP
TN

FN

0% 100%P(FP)

100%

P(TP)

By Sharpr, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:ROC_curves.svg.
27
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AUC-ROC, sensitivity and specificity

• Area under the ROC (AUC-ROC) curve: threshold-independent performance
measurement

• Ability of the classifier to properly discriminate two classes for all thresholds

• Similarity with nonparametric Wilcoxon-Mann-Whitney test

• Sensitivity: number of correctly identified positives

sensibility =
|TP|

|TP|+ |FP|

• Specificity: number of correctly identified negatives

specificity =
|TN|

|TN|+ |FN| = 1− |FP|
|TN|+ |FN|

28



Precision and recall

• Searching for information in databases
• Extracted entries following a query: positive

• Relevant entries for a query: true positives + false negatives

• Accuracy: # relevant extracted entries by # extracted entries

precision =
|TP|

|TP|+ |FP|

• Accuracy of 1: extracted entries all relevant, but may remain false negatives

• Equivalent to sensitivity

• Recall: # elevant entries extracted by # relevant entries

recall =
|TP|

|TP|+ |FN|

• Recall of 1: all relevant entries are retrieved, but there may be irrelevant (false

positive) entries retrieved. 29



Precision and recall

Recall =
|P \ R|

|P |
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<latexit sha1_base64="hcYp+YU4UhEjVheYNmpl16+faDg=">AAACDHicbVDLSgNBEOz1GeMr6tHLYBA8hd0omGPAi8dEzAOSJcxOJsmQeSwzs0JY8gWCJ/0Tb+LVf/BHPDtJ9mASCxqKqm66u6KYM2N9/9vb2Nza3tnN7eX3Dw6Pjgsnp02jEk1ogyiudDvChnImacMyy2k71hSLiNNWNL6b+a0nqg1T8tFOYhoKPJRswAi2Tqo/9ApFv+TPgdZJkJEiZKj1Cj/dviKJoNISjo3pBH5swxRrywin03w3MTTGZIyHtOOoxIKaMJ0fOkWXTumjgdKupEVz9e9EioUxExG5ToHtyKx6M/E/r5PYQSVMmYwTSyVZLBokHFmFZl+jPtOUWD5xBBPN3K2IjLDGxLpslrYwooTAS3+kkZjmXVDBaizrpFkuBdelcv2mWK1kkeXgHC7gCgK4hSrcQw0aQIDCM7zCm/fivXsf3ueidcPLZs5gCd7XL2qnm9s=</latexit>

Recall = 1

P
<latexit sha1_base64="pusAys33xpJaV0J8Vppwkyl1oCM=">AAACDHicbVDLSgNBEOz1GeMr6tHLYBA8hd0omGPAi8cEzAOSRWYns8mQeSwzs0JY8gWCJ/0Tb+LVf/BHPDtJ9mASCxqKqm66u6KEM2N9/9vb2Nza3tkt7BX3Dw6Pjksnp22jUk1oiyiudDfChnImacsyy2k30RSLiNNONL6b+Z0nqg1T8sFOEhoKPJQsZgRbJzUbj6WyX/HnQOskyEkZcrj+n/5AkVRQaQnHxvQCP7FhhrVlhNNpsZ8ammAyxkPac1RiQU2YzQ+dokunDFCstCtp0Vz9O5FhYcxERK5TYDsyq95M/M/rpTauhRmTSWqpJItFccqRVWj2NRowTYnlE0cw0czdisgIa0ysy2ZpCyNKCLz0RxaJadEFFazGsk7a1UpwXak2b8r1Wh5ZAc7hAq4ggFuowz00oAUEKDzDK7x5L9679+F9Llo3vHzmDJbgff0CZ1eb2Q==</latexit>

R
<latexit sha1_base64="hcYp+YU4UhEjVheYNmpl16+faDg=">AAACDHicbVDLSgNBEOz1GeMr6tHLYBA8hd0omGPAi8dEzAOSJcxOJsmQeSwzs0JY8gWCJ/0Tb+LVf/BHPDtJ9mASCxqKqm66u6KYM2N9/9vb2Nza3tnN7eX3Dw6Pjgsnp02jEk1ogyiudDvChnImacMyy2k71hSLiNNWNL6b+a0nqg1T8tFOYhoKPJRswAi2Tqo/9ApFv+TPgdZJkJEiZKj1Cj/dviKJoNISjo3pBH5swxRrywin03w3MTTGZIyHtOOoxIKaMJ0fOkWXTumjgdKupEVz9e9EioUxExG5ToHtyKx6M/E/r5PYQSVMmYwTSyVZLBokHFmFZl+jPtOUWD5xBBPN3K2IjLDGxLpslrYwooTAS3+kkZjmXVDBaizrpFkuBdelcv2mWK1kkeXgHC7gCgK4hSrcQw0aQIDCM7zCm/fivXsf3ueidcPLZs5gCd7XL2qnm9s=</latexit>
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14.7 Confidence interval and

statistical laws



Confidence interval

• Estimator (e.g. maximum likelihood): a value of a parameter

• Confidence interval: the range of plausible values of a parameter, for a given
confidence threshold.

• Based on the underlying probability density of the estimator

• Example: estimation of mean µ of a normal distribution from samples
X = {x t}Nt=1

• Estimation by average of samples: m =
∑

t x t/N

• m is a sum of normal variables, and thus also normal, m ∼ N (µ,σ2/N)

• According to the normal law, we therefore have confidence at 95 % that

µ ∈ [m − 1.96σ/
√

N,m + 1.96σ/
√

N]

P

(
m − 1.96

σ√
N
< µ < m + 1.96

σ√
N

)
= 0.95

31



Confidence interval

• Law Z: normal law of null mean and unit variance, Z ≡ N (0, 1)
• General formalization of confidence interval for normal law:

Z ∼ Z, P(Z > zα) = α, α ∈ [0, 1]
• Normal law of null mean is symmetrical

• Single bound: P(−zα < Z) = 1− α, P(Z < zα) = 1− α, α ∈ [0, 1]

• Double bounds: P(−z0.5α < Z < z0.5α) = 1− α, α ∈ [0, 1]

• Estimation of sample mean m ∼ N (µ,σ2/N), implies
√

N
m − µ
σ

∼ Z

P

(
m − zα

σ√
N
< µ

)
= 1− α

P

(
µ < m + zα

σ√
N

)
= 1− α
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χ2 Law

• If Zi ∼ Z are independent random variables, and

X = Z 2
1 + Z 2

2 + · · ·+ Z 2
n

then X follows a law from χ2 with n degrees of freedom, X ∼ χ2
n

• Expected value of E[X ] = n and variance Var(X ) = 2n

• For a sampling x t ∼ N (µ,σ2)

• Variance estimate: s2 =
∑

t(x
t−m)2

N−1

• (N − 1) s2

σ2 ∼ χ2
N−1

• χ2 Law is excellent for performing statistical tests on several random variables
according to normal laws

• For example, several estimates of a classification rate
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Student’s Law

• Student’s Law: suitable for testing on normal distributions where there are few

samples.

• If Z ∼ Z and X ∼ χ2
n are independent, then Tn ∼ tn, follows a Student’s Law

with n degrees of freedom

Tn =
Z√
X/n

• With large n, the distribution has a shape similar to a normal distribution of mean

equal to 0

• Expected value E[Tn] = 0, variance Var(Tn) = n
n−2 , pour n > 2
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14.8 Statistical tests



Hypothesis testing

• Hypothesis testing: classic method for testing the statistical validity of results
• Assuming that a random variable follows a certain density law

• Estimate the probability that the variable meets the hypothesis based on the

statistics obtained from the measurements

• If the probability is sufficiently high, the test is positive (null hypothesis verified)

• t-test (Student’s Law)
• Difference between true mean µ0 and mean m from N samples, having a variance s,

follows a Student’s Law with N − 1 degrees of freedom
√

N(m − µ0)

s
∼ tN−1

• Hypothesis verified with probability 1− α when:
√

N(m − µ0)

s
∈ [−t0.5α,N−1, t0.5α,N−1]
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Paired t-test

• Using the t-test for K -fold cross-validation
• K error percentages pi on validation sets Vi , i = 1, . . . ,K

pi =

∑
xt∈Vi I(r t ,h(xt |Ti ))

N
• Mean and variance of results with K -fold cross-validation

m =

∑K
i=1 pi

K
, s2 =

∑K
i=1(pi −m)2

K − 1

• Paired t-test performed according to
√

K (m − p0)

s
∼ tK−1

where p0 is the error rate verified by the hypothesis test

• So, error rate less than p0 with probability 1− α if next test is positive
√

K (m − p0)

s
< tα,K−1
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Paired t-test for results comparison

• Comparison of two algorithms trained with K -fold cross-validation
• p1

i : classification error on Vi of the first algorithm trained on Ti
• p2

i : classification error on Vi of the second algorithm trained on Ti
• Difference of the classification error on fold i : pi = p1

i − p2
i

• Hypothesis test: mean value of pi is null

• Mean and variance of the error difference

m =

∑K
i=1 pi

K
, s2 =

∑K
i=1(pi −m)2

K − 1

• The error difference pi follows a Student’s Law with K − 1 degrees of freedom
√

K (m − 0)

s
=

√
Km

s
∼ tK−1

• Algorithm with statistically identical performance, with probability 1− α, if next

test is positive √
Km

s
∈ [−t0.5α,K−1, t0.5α,K−1] 37



Analysis of variance (ANOVA)

• ANOVA: comparing several classification algorithms

• How to compare L algorithms, each trained and tested on K pairs of different

subsets?

• Assuming that each result Ei,j follows a normal distribution of mean

Ei,j ∼ N (µj ,σ
2), i = 1, . . . ,K , j = 1, . . . ,L

• Average µj unknown and different for each algorithm

• Variance σ2 shared by all folds/algorithms

• Hypothesis H0: all averages µj are equal

H0 : µ1 = µ2 = · · · = µL

• ANOVA approach: two different estimators of σ2

• First estimator of σ2 valid only when H0 is true

• Second estimator of σ2 valid no matter how valid H0 is
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First estimator of σ2 with ANOVA

• First estimator of σ2: H0 is valid
• Average by algorithm on K folds: mj =

∑K
i=1 ei,j
K

• Mean and variance of the mj

m =

∑L
j=1 mj

L
, s2 =

∑L
j=1(mj −m)2

L− 1

• Estimator of σ2

σ̂2 = Ks2 = K

∑L
j=1(mj −m)2

L− 1
• As each mj follows a normal law, we can say

(L− 1)s2

σ2/K
=

K
∑L

j=1(mj −m)2

σ2
∼ χ2

L−1

• By posing Sb ≡ K
∑L

j=1(mj −m)2, we get H0 is valid when

Sb

σ2
∼ χ2

L−1
39



Second estimator of σ2 with ANOVA

• Second estimator of σ2: independent of validity of H0

• σ2: mean of the variance s2j of the algorithms

s2j =

∑K
i=1(ei,j −mj)

2

K − 1

σ̂2 =
L∑

j=1

s2j
L

=
L∑

j=1

K∑
i=1

(ei,j −mj)
2

L(K − 1)

• By posing Sw ≡
∑L

j=1

∑K
i=1(ei,j −mj)

2

(K − 1)
K∑
j=1

s2j
σ2

= (K − 1)
K∑
j=1

∑K
i=1(ei,j −mj)

2

(K − 1)σ2
=

Sw

σ2
∼ χ2

L(K−1)
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ANOVA

• Fisher’s law: ratio of two independent χ2 laws

Fn,m =
X1/n

X2/m
, où X1 ∼ χ2

n et X2 ∼ χ2
m

• ANOVA: reject hypothesis H0 if the two estimators of σ2 differ significantly

H0 : µ1 = µ2 = · · · = µL
Sb/σ

2

L−1
Sw/σ2

L(K−1)

=
Sb/(L− 1)

Sw/(L(K − 1))
=

L(K − 1)

L− 1

Sb

Sw
∼ FL−1,L(K−1)

• Therefore, hypothesis that average classification rates are equal for all algorithms

is valid at a probability 1− α when

L(K − 1)

L− 1

Sb

Sw
< Fα,L−1,L(K−1)
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14.9 Python tools for

experimentation



Python tools for experimentation

• sklearn.model_selection.cross_val_score: K -fold cross-validation

• scipy.stats.ttest_rel and scipy.stats.ttest_ind: t-test, paired or

independent

• scipy.stats.f_oneway: analysis of variance (ANOVA)

• seaborn.boxplot: graphical comparison of several results (requires Seaborn

library)

From https://seaborn.pydata.org/generated/seaborn.boxplot.html .

• Auto-sklearn: AutoML with scikit-learn

https://automl.github.io/auto-sklearn/master/ 42

https://seaborn.pydata.org/generated/seaborn.boxplot.html
https://automl.github.io/auto-sklearn/master/
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