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13.1 Vector quantization



Clustering

e Supervised learning

e Class labels available

e Parametric methods: observations follow a given probability density p(x|C;)
e One group of data per class

e According to a normal distribution, mean and covariance law shared by all data from
the same class
e In practice, the data of a class can fit in several groups

e Cursive writing: different ways of doing 1's and 7's
e Detecting intrusions in a computer system

e Clustering

e |dentifying “natural” groups in the data



Vector quantization

e Vector quantization
e Discretize a space RP, by partitionning it into K regions
e Possible quantization using K reference vectors m;
e Assignment of a data x! according to the nearest reference vector

bt — 1 i =argmin; [x* — my]|
' 0 otherwise

e Partitioning of the space according to a Voronoi diagram




Compression and reconstruction

e Complete compression of space RP in K reference vectors m;
e Each point in the input space is associated to one of the reference vectors (discrete
values)
e Colormap example
e Colour of a pixel in an image: 24 bits
e Transmit image of 640 x 400 pixels: more than 6M bits
e Compression with a colormap of 256 different colours
e The colormap fits on 6144 bits
e Pixels refer to the colormap: 8 bits per pixel
e Image encoded on 2M bits, so, it is a gain of 3: 1.
e Loss of information if more than 256 different colours in the image

e Choice of colours minimizing a certain criterion

e Reconstruction error

E({m}Sy]x) =) Z bf[|x* — my|?



Compression by clustering
x—

m
2 ™

j 0 (%)

‘arg min,||x — mZ||‘
v
=
=

Encoder Decoder




13.2 K-means



K-means

e Calculation of the optimum reconstruction error E({m;}£ ||X’) according to the
m; is impossible analytically
e Optimal position of the centres m; depends on the labels bf
e Optimal choice of labels b depends on the position of the centres m;!
e lterative resolution, by successive approximations of bf and m,;
e Estimate b!(j + 1) according to m;(})
e Estimate m;(j + 1) according to bf(j + 1)
e Repeat until convergence or resources depletion



Estimation of the centres

e Estimated centres m; according to the labels b,-t

e m; with partial derivative of E({m;}X|X) according to m;

OE({mi}f,|X) 030, 30 bi(xf — m;) " (x' —m) —0
amj B 3mj o
= —2) bi(x'—m;)=0
t
2 bixt
m; = ,j=1....K
! 2ibj



K-means algorithm

1. Initialize centres m; randomly
2. As long as the stop criterion is not met, repeat:

2.1 Estimate data labels bf according to the positions of the centres m;

pt—J 1 7= aremin, I =mill k=1
0 otherwise

2.2 Optimize the position of the centres m; with the new labels b}

bext
zt i=1

=1,...,K
thtv ’ )

m; =

3. Return centre values m;



Illustration of K-means
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ialization and stop criteria

e Possible approaches to initializing centres m;

e Randomly select K instances of X
e Calculate the mean vector of all the data and initialize K centres around this mean,

with slight random variations for each centre
e Based on the principal component

1.
2. Project the data on the corresponding line

3.

4. Calculate the average of each of these groups in the space of origin and use them as

Calculate the principal component
Partition the data on the line into K groups of equal size

starting centres

e Stop criteria

e Maximum number of iterations
e Variation of the position of the centres is below a given threshold



K-means properties

e No guarantee of convergence towards the global optimum

e Outcome depends on the choice of the initial positions of the centres

e Relatively fast convergence
e Number of centres to be used fixed in advance
e Requires knowledge of the number of groups forming the data

e |f number of groups is unknown, empirically determine K
e Leader cluster algorithm: incremental addition of centres when the distance of a

data to its centre exceeds a threshold
e Variation: add a centre when the number of data associated to a centre exceeds a

threshold
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lllustration of K-means: 2 groups
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Application: colormap compression




13.3 Mixture density




Mixture density

e Mixture density: combination of density laws associated with several groups

K
p(x) =>_ p(xG)P(G))
i=1
e Direct link with the supervised case

e Similar formulation, but groups are known and identified in the supervised case
e Can be used with parametric methods, when there are many groups in each class

e Mixture of components according to a multivariate normal law
e Component density: (x|G;) ~ Np(u;, %))
e Parametrization: ® = {P(G;),u:,3;}5,

e Uses unlabeled samples, X = {x‘}N
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Mixture density probabilities

e Mixture density
K

p(x) =Y p(xIG))P(G))

i=1

e Proportion of the group G; in the mixture, P(G;)
Z P(Gi) =1
e Probability that x belongs to the group G;, P(G;|x)

S P(Gi)p(x|Gi)
PO = S 565015
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Hidden indicator variables

e Hidden indicator variables z* = {z{,... zk}
e z[: association of the data x* with the group G;
e We don’t know the “real” values of the Z: hidden variables of the problem
e Simplification of the notation: m; = P(G;)
e Multinomial distribution: zf = 1 indicates that variable x* belongs to the group G;,
and z! = 0 otherwise

e Likelihood of observation of x!
K

p(x'[z") = [ [ p(x"1G))*
i=1
e Joint probability p(x*,z")

p(x'.2") = P(z")p(x’z") 16



Likelihood Function

e Log-likelihood function of the parametrization ¢ according to the association of
the data of X to the groups given by Z

L(d|x,2) = Iong (xt,zt|d) = IogH (2']®) p(x*|z",0)]
= IogHH |:7l' p(x*|G;,®) }
= ZZ {Iog 7r,-i + log p(xt|g;,d>)zit}
= zt: zl: z{ (log i + log p(x*|G;,®))
t i

iP(Gilx",®)
- £ log 7 + log —
thzi:z, (ogw + log Zj FjP(gj’Xtad)))
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13.4 Expectation—maximization
algorithm




Expectation—maximization algorithm

e Membership h! = P(Gj|x!,®): association to a group G; of a data x’ according to
the parametrization ® (hidden variable observation z*)
e Log-likelihood depends on the parametrization ¢ according to the association of
hidden variables Z
e Similarly, the association of the hidden variables Z depends on parametrization ¢
e We don't know the real Z (hidden random variables): optimization of the likelihood
expectation
e Optimization of the analytical equation is impossible: iterative approach
e Expectation—maximization algorithm (EM)
e E-step: calculation of the expectation of associations to groups hf = P(G;|x*,®)
with current ® parametrization
e M-step: get new parametrization ®'*1 maximizing the likelihood expectation
Q(®|e)

Q(¢|9") =E [L(®|X,2)|X,0'], ®*1 = argmax Q(d|d’)
@ 18



e Given @/, what is the likelihood expectation of other possible ® parametrizations?
Q(o[¢)) = E[L(®|X,Z2)X,9]
= Z ZE[ZHX,(D'] (Iog i + log p(xt\g,-,d)))

t i

e Label expectation E[zf|X,®/] given by:

E[zf|X,0'] = E[z[x",¢] x! are iid
= P(zf =1]x",0") z! is boolean
_ P(F=10)p(x!|zf=1,9")
= p(xE|®7) Bayes rule
_ mip(xGi, ') P(G)p(x'|G;, ")

> mp(xlGLeN) T 3 P(G)p(xtG;07)
= P(Gixt, ) = ht

19



Likelihood expectation

e Interpretation of h!
o hi = E[z}|X,®'] = P(Gi|x!,®') gives the a posteriori probability that x¢ belongs to
the group G;
e Probabilistic observation of the hidden variable z}
e Reinterpretation of a discriminant for clustering
e hiis a relaxed version of the b} binary membership of K-means

e Resulting likelihood expectation
o(d[d) = Zth log 7; + log p(x'|G;,®")]
— Zthlogﬁ,—i—Zthlogp (x!|G;,®")
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e M-step: find a new parametrization ®'*1 maximizing the likelihood expectation

Q(o[®’)

o = argmax Q(d|d)
[0)
Q(d|d)) = Zthlogm+Zthlogp(xt|Q,~,¢l)
t ti

e Maximum where partial derivatives are equal to zero

e T7; is a probability, therefore >, 7; = 1, resolution with Lagrange's method

9Q(¢[®) 9 ¢
— = = ht log 7 — A 1| =0
87@- 87@- zt: z’: i 08T XI: T
e Resolution of ® specific to the probability law

21



Solving the a priori probabilities 7;

e Solve 0Q(®|®') /o

09(d|d))
on;

8877]’ [Zthlogﬂ';—)\

t i

(

ZT(,‘—I

1

-
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13.5 EM algorithm for multivariate
normal distribution




EM algorithm for multivariate normal distribution

e Specific instance of the EM algorithm, (x!|G;,®) ~ Np(m;,S;)

e Solving m; for ® = {m;,m;,S;}K,

9 t 1 1. ANTQ—1l(yt  n. _
aijZh’ log (2m)05D[s; |05 &P {75(’( —m;) S;(x m,)} =0

0 to t ATQ—1(gt o\
a—mjzt:z[:h,(x m) S (x-m) = 0
Doh(x —m)(-1) = 0

t
thxt ijhj
t

t
m; =

2 hixt
2o hj

23



e Solving S; for & = {7r,-,m,-,S,-},K:1
iZZh-ﬁ Iog;exp fl(xtfm;)TSfl(xtfm,-) =0
98; £ £ i (2m)05D]S;[05 2 i

_ e = my) (- m;) "
2o hf

S,

e Solving S; is subtle, requires the spectral theorem

e For more details, see:

http://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

24


http://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

Summary of EM algorithm for multivariate normal law

e E-step: evaluation of b}, i=1,....K,t=1,...,N

7i|Si|7%% exp [-0.5(x! —m;) TS (x! — m))]

hf =

55 1181708 exp | ~0.5(xt — my)TS;H(x — my)|

e M-step: evaluation of ® = {7T,~,m,-,S,~},K:1

T

m;

S;

2 hi
N
2o hixt
2 hi
> hf(xf — my)(x* —m;) "
2 hi
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lllustration of the EM algorithm
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13.6 General EM algorithm




General EM algorithm

1. Generate an initial configuration ®°
2. As long as the stop criterion is not reached, repeat:

2.1 E-step: Assessing membership h}
ht = P(Gi|xt, ), i=1,....K,t=1,...,N

2.2 M-step: Evaluate new value of ®/*! according to Q(®|®')

Qo) = E[L(]X,2)|X.P]
®*1 = argmax Q(|d)
®

3. Return the ® of the final iteration

27



lllustration of the EM algorithm: 2 groups

Dataset Iteration : 1 lteration : 2

Iteration : 3 Iteration : 4 Iteration : 5
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ration of the EM algorithm: 3 groups

Dataset Iteration : 1 lteration : 2

Iteration : 5

Iteration : 6 Iteration : 7
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Notes on the EM algorithm

e Initialization of ®° for the algorithm with K-means when (x|G;,®) ~ Np(m;,S;)
e Estimate the centres with K-means for the initial m;
e Compute covariance matrix S; from associations to groups G; of data x* according
to b! obtained with K-means
e Calculate the a priori probabilities according to m; = >~, bf /N
e High dimensional model simplifications
e Sharing the covariance matrix between groups
e Diagonal covariance matrix
e Covariance matrix ol

30



K-means as EM algorithm

e K-means is a specific case of the EM algorithm
e A priori probabilities equal for all groups, m; = %, Vi.
e Shared covariance matrix sl
o &P [—0.5572||x" — m;]|?]
b 2lexp[—0.557Ixt — my?]

e Associations b! € {0,1} are a “hard” version of h! € [0,1]

bt — 1 if i = argmax; ht
! 0 otherwise

e K-means uses circular probability densities, while EM with multivariate normal
distribution uses ellipses of any shape and orientation
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13.7 Hierarchical clustering




Hierarchical clustering

e |terative data agglomerations
1. Start with N groups, one per observation
2. Combine the two most similar groups and recalculate the mean centre
3. Repeat until only one group is obtained
e |terative data divisions
1. Start with one group
2. Divide into two groups as different as possible
3. Repeat until N groups are obtained

e Similarity measurement for clustering agglomerative clustering

e Single-linkage clustering d(G;,G;) = énin G D(x",x*)
x"eg;,x*€eg;
e Complete-linkage clustering d(G;,G;) = max__ D(x",x?)
x'eg;,x*€g;
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Example of hierarchical clustering
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Clustering utilisation

e Exploring data structure
e Discovering similarities in the data
e Organize the data into similar groups
e Experts can name these groups according to the concepts they represent
e A concept can be represented by different groups
e Data preprocessing
e Projection in the h; space
e Discrimination in the h; space
e Mixture density for classification
KA
p(x|C;) = p(x|Gi;)P(Gi;)
=1

-
Il

p(x) = p(x|C)P(C)

M =

1
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Choosing the number of groups

e The choice of the number of groups is a crucial parameter, how to determine it?
e Some applications impose it naturally
e In the example of the colormap, we want k = 256 groups (colours)
e Plotting the data in 2D, using PCA, can help identify the number of natural groups
in the data
e An incremental algorithm can dynamically add centres, according to a certain
criterion
e Expert verification/validation of groups can help determine if the number of groups
IS appropriate
e Visual image inspection
e Analysis of group prototypes
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13.8 Clustering in scikit-learn




Scikit-learn: K-means

e cluster.KMeans: K-means algorithm
e Parameters

e n_clusters (int): number of clusters (default: 8)

e max_iter (int): maximum number of iterations (default: 300)

e n_init (int): number of repetitions, the best solution according to inertia is kept
(default: 10)

e init (string or ndarray): initialization of the algorithm, ’k-means++’ for “intelligent”
approach, ’random’ for random initialization, use a ndarray for given values

e tol (float): tolerance on inertia before declaring convergence

o Attributes

e cluster_centers_ (array): centre values, m; (size N x D)
e labels_ (array): data labels, b}

e inertia_ (float): value of inertia, which is >, >, bf (x" — m;)
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Scikit-learn: EM algorithm

e mixture.GaussianMixture: EM with multivariate normal distributions
e Parameters

e n_components (int): number of clusters (default: 1)

e covariance_type (string): type of covariance matrix (default: *full’)
— ’full’: complete and distinct covariance matrices
— ’tied’: complete and shared covariance matrix
— ’diag’: diagonal and distinct covariance matrices
— ’spherical’: isotropic and distinct matrices (2 = ol)

max_iter (int): maximum number of iterations (default: 100)

n_init (int): number of repetitions, the best solution is kept (default: 1)

init_params (string): initialization method, with K-means (’kmeans’) or randomly
(’random’) (default: ’kmeans’)
o Attributes

e weights_ (array): a priori probabilities of each cluster, P(G;) (vector of size K)

e means_ (array): average vectors of the clusters (size K x D)

e covariance_ (array): covariance matrices
37



Scikit-learn: hierarchical clustering

e cluster.AgglomerativeClustering: hierarchical agglomerative clustering
e Parameters

e n_clusters (int): number of clusters to find (default: 2)

e affinity (string or callable): affinity measure to use, can be ’euclidean’, ’11°,
’12°, ’manhattan’, ’cosine’ or ’precomputed’ (default: ’euclidean’)

e ’linkage’ (string): distance criterion between clusters (default: ’ward’)
— ’ward’: minimize the variance of agglomerated clusters
— ’complete’: in complete-linkage, maximum of the distance between two pairs of
two clusters
— ’average’: average of the distances between the cluster pairs

o Attributes

e labels_ (array): clustering labels
e n_leaves_ (int): number of leaves in the dendrogram
e children_ (array): structure of the dendrogram
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