Data Preprocessing and Analysis

Introduction to Machine Learning - GIF-7015
Professor: Christian Gagné
Week 12
12.1 Data preprocessing

Importance of preprocessing

- Learning algorithms are sensitive to input values
- Scales of variables must be comparable
- Larger scale variables are dominant in measures of similarity (e.g. Gaussian kernel) and distance (e.g. Euclidean, Manhattan)
- High input values cause saturation of sigmoid neurons
- Variables may sometimes be missing
- Defective sensor, omissions during data collection, measurements added along the way
- High dimensionality
- Sensitivity of algorithms to dimensionality
- Redundancy in measurements
- Data preprocessing is essential in practice
- Rarely have access to well formatted and complete data, ready to be used
- Important to understand the nature of the data in order to process it properly

Scaling

- Scale adjustment of variables
- Common approach: bring the range of possible values back into $[0,1]$
- Make scaling on each variable independently

$$
x_{i}^{\prime}=\frac{x_{i}-x_{i}^{\min }}{x_{i}^{\max }-x_{i}^{\min }}, \quad i=1, \ldots, D
$$

where:

$$
\begin{aligned}
& x_{i}^{\max }=\max _{t=1, \ldots, N} x_{i}^{t}, \quad i=1, \ldots, D \\
& x_{i}^{\min }=\min _{t=1, \ldots, N} x_{i}^{t}, \quad i=1, \ldots, D
\end{aligned}
$$

- Scaling values calculated on a given dataset
- New data could have value of variable X_{i} outside the domain $\left[x_{i}^{\min }, x_{i}^{\max }\right]$
- Simple approach that often does a reasonable job

Standardization

- Standardization: bring the distribution of each variable back to a reduced normal centered distribution, $x_{i}^{\prime} \sim \mathcal{N}(0,1)$
- Center the mean at zero and adjust for a unit standard deviation

$$
x_{i}^{\prime}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}, \quad i=1, \ldots, D
$$

- Less sensitive to outliers than a scaling
- Independent variables treatment
- Does not remove the covariance between the variables, $\boldsymbol{\Sigma} \neq \mathbf{I}$
- Whitening transformation (presented later today) allows to obtain data according to a unit normal distribution, $\mathbf{x}^{\prime} \sim \mathcal{N}_{D}(0, \mathbf{l})$

Imputation

- What to do if variable values are missing?
- Remove data with missing values
- Loss of data for learning
- Possible bias in removed data
- Mark missing variables for the learning algorithm
- Some learning algorithms can handle missing variables
- Assign a default value to the missing variables (typically zero)
- Randomly select from the other data and assign its value to the missing variable
- Assign mean value of the variable, $x_{i}^{\prime}=\bar{x}_{i}$
- Reduces the measured variance of the variable in the dataset

Regression for imputation

- Replacing missing variables can distort the data
- How to assign a plausible value to missing values?
- Use supervised learning to fill in missing values
- For each variable, learn regression model to impute missing values

$$
x_{i}^{\prime}=\mathrm{f}\left(\left[x_{1} \ldots x_{i-1} x_{i+1}, \ldots, x_{D}\right]^{\top} \mid \theta_{i}\right)
$$

- The targets r^{t} used to learn parameterization θ_{i} correspond to the values x_{i} for the data where they are not missing
- Values more representative of the data, but can still reduce the variance as regression will capture the most likely values
12.2 Feature selection

Dimensionality reduction

- Dimensionality reduction
- Go from a space with D dimensions to a space with K dimensions, where $K<D$

$$
X_{1}, \ldots, X_{D} \mapsto X_{1}^{\prime}, \ldots, X_{K}^{\prime}
$$

- Possible approaches
- Feature selection: choose K variables among the possible D variables

$$
\begin{aligned}
& X_{1}, \ldots, X_{D} \mapsto X_{v_{1}}, \ldots, X_{v_{K}} \\
& v_{i} \in\{1, \ldots, D\} \mid v_{i} \neq v_{j}, \forall j \leq i
\end{aligned}
$$

- Feature extraction: generate K variables as transformations of the original D variables

$$
X_{1}, \ldots, X_{D} \mapsto \mathrm{f}_{1}\left(X_{1}, \ldots, X_{D}\right), \ldots, \mathrm{f}_{K}\left(X_{1}, \ldots, X_{D}\right)
$$

Reasons for reducing dimensionality

- Curse of dimensionality
- Adding a dimension exponentially increases mathematical space
- 100 points equidistant by 0.01 in one dimension $\Rightarrow 10^{20}$ needed in 10 dimensions to keep the same density
- High dimensionality: high computational and memory complexity
- Saving measurement costs
- The simpler a model is, the less variance there is
- Easier to explain with fewer variables: knowledge extraction
- Viewing data: analyzing results

Curse of dimensionality

Feature selection

- Objective: find a subset of K variables among $\left\{X_{1}, \ldots, X_{D}\right\}$, while preserving the performance
- Number of possible subsets: $\binom{D}{K}$

$$
\binom{10}{5}=252,\binom{50}{10} \approx 10^{10},\binom{100}{20} \approx 10^{20}
$$

- Heuristics: the art of inventing, of making discoveries
- Algorithm that quickly provides (in polynomial time) a feasible, not necessarily optimal solution
- As opposed to an exact algorithm that finds an optimal solution

Evaluations of subsets of features

- Filter approach
- Calculate performance without a new training, with indirect measurement (proxy)
- Not very demanding in calculation, but mixed results
- Wrapper approach
- For each candidate set of features, train a new classifier
- Empirical error assessment (training, validation, cross-validation, etc.)
- Much more expensive in calculation time
- Embedded approach: feature selection integrated in model learning

Univariate selection

- Select according to performance measurement of individual features
- Basic approach: select features for which variance exceeds a threshold
- Assumes that the variance accurately describes the usefulness of each feature for classification
- Good for filtering features of very low or zero variance (avoid singular covariance matrices)
- Selection according to other criteria
- Correlation between features (keep set of decorrelated variables)
- Mutual information between the feature and the target value

$$
I(i)=\int_{X_{i}} \int_{r} p\left(X_{i}, r\right) \log \frac{p\left(X_{i}, r\right)}{p\left(X_{i}\right) p(r)} d r d X_{i}
$$

- Effect on empirical error, with imputation of unselected variables

Forward sequential selection

- Gradually build the feature set, adding the most promising variable

1. Starting with an empty feature set
2. Add the feature that improves the most (according to a certain criterion) the set of features
3. Repeat step 2 as long as the stop criterion is not reached

- Greedy algorithm: making iterative local decisions
- Does not account for complex relationships between variables
- Example:
- Variables X_{a}, X_{b} and X_{c} taken individually or in pairs \Rightarrow low gain
- The three variables taken together \Rightarrow high gain
- Algorithmic complexity $O(K D)$

Forward Sequential Selection Algorithm

1. Initialize the algorithm:

- Create the set of selected features:

$$
F^{0}=\emptyset
$$

- Create the set of unselected features:

$$
G^{0}=\left\{X_{1}, \ldots, X_{D}\right\}
$$

2. For $t=1, \ldots, D$, as long as the stop criterion is not reached:
2.1 Determine the feature that reduces the most the error:

$$
X_{j}=\underset{X_{i} \in G^{t-1}}{\operatorname{argmin}} E\left(F^{t-1}+\left\{X_{i}\right\}\right)
$$

2.2 Select this feature by adding it to F and removing it from G :

$$
F^{t}=F^{t-1}+\left\{X_{j}\right\}, \quad G^{t}=G^{t-1} \backslash\left\{X_{j}\right\}
$$

3. Return the final subset F of selected features

Stopping criteria

- Possible stopping criteria
- Stop when K features are selected
- Stop when all features are selected
- Return the set of features that lead to minimal empirical error
- Stop when error reduction is below a threshold

$$
E\left(F^{t}\right)-E\left(F^{t+1}\right)<\epsilon
$$

Backward sequential selection

- Reverse approach: start with all variables and iteratively remove those that contribute the least.

1. Create the set of selected features:

$$
F^{D}=\left\{X_{1}, \ldots, X_{D}\right\}
$$

2. For $t=D-1, D-2, \ldots, 1$, as long as the stop criterion is not reached:
2.1 Determine the least contributing feature:

$$
X_{j}=\underset{X_{i} \in F^{t+1}}{\operatorname{argmin}} E\left(F^{t+1} \backslash\left\{X_{i}\right\}\right)
$$

2.2 Remove this feature from F :

$$
F^{t}=F^{t+1} \backslash\left\{X_{j}\right\}
$$

3. Return the final subset F of selected features

Other approaches for feature selection

- Add-I-remove-r
- Hybrid between forward and backward sequential approaches, avoids some local minima
- Branch-and-bound
- Organize features into trees, according to their similarities
- Reduction by cutting into the tree to eliminate similar features
- Multi-objective evolutionary algorithm
- Population-based stochastic optimization inspired by natural evolution
- Global search: one individual $=$ a subset of features
- Optimization according to two objectives simultaneously: reducing the error and reducing the number of selected features
12.3 Principal component analysis

Feature extraction

- Feature selection
- Advantage: allows to remove completely from the measurements
- Drawback: sometimes several variables are poor in information when taken individually, but rich in information when taken collectively
- Example: object recognition from image pixels
- Feature extraction
- Projection from a space with D dimensions to a space with K dimensions
- Advantage: allows to compress the information to a space of reduced dimensionality
- Drawback: requires taking all original D measurements

Reminder: linear transformations

- Translation in a space

$$
\mathbf{y}=\mathbf{x}+\mathbf{u}
$$

- Linear transformation according to matrix \mathbf{A} of size $K \times D$

$$
\mathbf{y}=\mathbf{A x}
$$

- Rotation in a space (example in 2D)

$$
\mathbf{A}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- General formulation

$$
\mathbf{y}=\mathbf{A}(\mathbf{x}+\mathbf{u})
$$

Principal component analysis

- Principal component analysis (PCA)
- Linear projection in a space with K dimensions, with minimal loss of information
- Variance $=$ information
- Consists in extracting vectors in the directions of maximum variances
- Unsupervised: uses only measurements, not class labels
- 1st principal component: direction of maximum variance
- 2nd principal component: direction of maximum variance orthogonal to the first component
- Linear transformation, centered on the mean vector

$$
\mathbf{z}=\mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu})
$$

Illustration of PCA

12.4 PCA derivation

Lagrange multipliers

- Method for solving optimization problems under constraints
- Example: maximize $f(\mathbf{x})$ under constraints that $g(\mathbf{x})=0$
- There is a parameter $\lambda \neq 0$ so that

$$
\nabla f+\lambda \nabla g=0
$$

- Corresponding equation with Lagrange multiplier

$$
L(\mathbf{x}, \lambda) \equiv f(\mathbf{x})+\lambda g(\mathbf{x})
$$

- Maximum obtained by finding $\nabla L(\mathbf{x}, \lambda)=0$
- If we are only interested in \mathbf{x}, we can eliminate λ without having to evaluate it

Example with the Lagrange multiplier

- Maximize $f\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2}$ subject to constraint $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1=0$
- Formulation with Lagrange multiplier

$$
L\left(x_{1}, x_{2}, \lambda\right)=1-x_{1}^{2}-x_{2}^{2}+\lambda\left(x_{1}+x_{2}-1\right)
$$

- Resolution of $\nabla L\left(x_{1}, x_{2}, \lambda\right)=0$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}} & =-2 x_{1}+\lambda=0 \\
\frac{\partial L}{\partial x_{2}} & =-2 x_{2}+\lambda=0 \\
\frac{\partial L}{\partial \lambda} & =x_{1}+x_{2}-1=0
\end{aligned}
$$

- Solution to the system of equations: $x_{1}=0.5, x_{2}=0.5$ and $\lambda=1$

Example with the Lagrange multiplier

PCA derivation

- First principal component \mathbf{w}_{1} : direction of the main variance

$$
z_{1}=\mathbf{w}_{1}^{\top} \mathbf{x}
$$

- Only the direction is important, $\left\|\mathbf{w}_{1}\right\|=1$
- If $\operatorname{Cov}(\mathbf{x})=\boldsymbol{\Sigma}$ then $\operatorname{Var}\left(z_{1}\right)=\mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{1}$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{w}^{\top} \mathbf{x}\right] & =\mathbf{w}^{\top} \mathbb{E}[\mathbf{x}]=\mathbf{w}^{\top} \boldsymbol{\mu} \\
\operatorname{Var}\left(\mathbf{w}^{\top} \mathbf{x}\right) & =\mathbb{E}\left[\left(\mathbf{w}^{\top} \mathbf{x}-\mathbf{w}^{\top} \boldsymbol{\mu}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\mathbf{w}^{\top} \mathbf{x}-\mathbf{w}^{\top} \boldsymbol{\mu}\right)\left(\mathbf{w}^{\top} \mathbf{x}-\mathbf{w}^{\top} \boldsymbol{\mu}\right)^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{w}^{\top}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{w}\right] \\
& =\mathbf{w}^{\top} \mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right] \mathbf{w} \\
& =\mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w}
\end{aligned}
$$

First principal component

- We look for the vector \mathbf{w}_{1} which maximizes $\operatorname{Var}\left(z_{1}\right)$, with constraint $\mathbf{w}_{1}^{\top} \mathbf{w}_{1}=1$
- Resolution by Lagrange method

$$
\begin{aligned}
L\left(\mathbf{w}_{1}, \alpha\right) & =\mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{1}-\alpha\left(\mathbf{w}_{1}^{\top} \mathbf{w}_{1}-1\right) \\
\frac{\partial L\left(\mathbf{w}_{1}, \alpha\right)}{\partial \mathbf{w}_{1}} & =2 \boldsymbol{\Sigma} \mathbf{w}_{1}-2 \alpha \mathbf{w}_{1}=0 \\
\boldsymbol{\Sigma} \mathbf{w}_{1} & =\alpha \mathbf{w}_{1}
\end{aligned}
$$

- By definition, $\boldsymbol{\Sigma} \mathbf{w}_{1}=\alpha \mathbf{w}_{1}$ is true when \mathbf{w}_{1} is an eigenvector of $\boldsymbol{\Sigma}$ and that α is the associated eigenvalue
- We choose the eigenvector with the largest eigenvalue, $\alpha=\lambda_{1}$, given that:

$$
\operatorname{Var}\left(\mathbf{w}_{1}^{\top} \mathbf{x}\right)=\mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{1}=\alpha \mathbf{w}_{1}^{\top} \mathbf{w}_{1}=\alpha
$$

Second principal component

- Vector \mathbf{w}_{2} maximizes $\operatorname{Var}\left(z_{2}\right)$
- Constraint 1: \mathbf{w}_{2} is unitary, $\mathbf{w}_{2}^{\top} \mathbf{w}_{2}=1$
- Constraint 2: \mathbf{w}_{2} is orthogonal to $\mathbf{w}_{1}, \mathbf{w}_{2}^{\top} \mathbf{w}_{1}=0$
- Resolution by Lagrange method

$$
\begin{aligned}
L\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta\right) & =\mathbf{w}_{2}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{2}-\alpha\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{2}-1\right)-\beta\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{1}-0\right) \\
\frac{\partial L\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta\right)}{\partial \mathbf{w}_{2}} & =2 \boldsymbol{\Sigma} \mathbf{w}_{2}-2 \alpha \mathbf{w}_{2}-\beta \mathbf{w}_{1}=0 \\
\mathbf{w}_{1}^{\top} \frac{\partial L\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta\right)}{\partial \mathbf{w}_{2}} & =2 \mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{2}-2 \alpha \mathbf{w}_{1}^{\top} \mathbf{w}_{2}-\beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1}=0
\end{aligned}
$$

- Given that $\boldsymbol{\Sigma} \mathbf{w}_{1}=\lambda_{1} \mathbf{w}_{1}$, then:

$$
\begin{aligned}
\mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{2}=\mathbf{w}_{2}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{1}=\lambda_{1} \mathbf{w}_{2}^{\top} \mathbf{w}_{1} & =0 \\
2 \mathbf{w}_{1}^{\top} \boldsymbol{\Sigma} \mathbf{w}_{2}-2 \alpha \mathbf{w}_{1}^{\top} \mathbf{w}_{2}-\beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1}=-\beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1}=0 & \Rightarrow \beta=0
\end{aligned}
$$

- So we simplify $2 \boldsymbol{\Sigma} \mathbf{w}_{2}-2 \alpha \mathbf{w}_{2}-\beta \mathbf{w}_{1}=0$

Second principal component

- $\boldsymbol{\Sigma} \mathbf{w}_{2}=\alpha \mathbf{w}_{2}$ implies that \mathbf{w}_{2} is also an eigenvector of $\boldsymbol{\Sigma}$
- Since we want to maximize $\operatorname{Var}\left(\mathbf{w}_{2}^{\top} \mathbf{x}\right)$, we choose the eigenvector associated with the second largest eigenvalue, $\alpha=\lambda_{2}$
- We proceed in the same way for the other dimensions, by choosing as \mathbf{w}_{i} the eigenvectors, in decreasing order of associated eigenvalues
- Rotation matrix $\mathbf{W}=\left[\begin{array}{llll}\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{K}\end{array}\right]$ thus contains the $K \leq D$ first eigenvectors (with higher eigenvalues)
- Additional properties
- Since $\boldsymbol{\Sigma}$ is symmetric, eigenvectors are orthogonal
- Since \mathbf{w}_{i} are unitary, they form an orthonormal base
- If $\boldsymbol{\Sigma}$ is defined as positive ($\mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}>0, \forall \mathbf{x} \neq 0$), all eigenvalues are non-zero, $\lambda_{i} \neq 0, \forall \lambda_{i}$
- Otherwise, the rank of $\boldsymbol{\Sigma}$ gives the number of non-zero eigenvalues

Eigenvalues/eigenvectors and PCA

ACP as a linear transformation

$$
\mathbf{z}=\mathbf{W}^{\top}(\mathbf{x}-\mathbf{m})
$$

12.5 Alternative PCA derivation

Alternative derivation

- Alternative PCA derivation
- Search for a transformation $\mathbf{z}=\mathbf{W}^{\top} \mathbf{x}$, where variables of \mathbf{z} are uncorrelated
- Consists in looking for \mathbf{W} so that $\operatorname{Cov}(\mathbf{z})=\mathbf{D}^{\prime}$ is diagonal
- Suppose \mathbf{C}, matrix $D \times D$, where column \mathbf{c}_{i} is i-th eigenvector of \mathbf{S}, the estimator of $\boldsymbol{\Sigma}$.
- So $\mathbf{C C}^{\top}=\mathbf{C}^{\top} \mathbf{C}=\mathbf{I}$

$$
\begin{aligned}
& \mathbf{S}=\mathbf{S C C}^{\top} \\
& =\mathbf{S}\left[\mathbf{c}_{1} \mathbf{c}_{2} \cdots \mathbf{c}_{D}\right] \mathbf{C}^{\top} \\
& =\left[\begin{array}{llll}
\mathbf{S c}_{1} & \mathbf{S c}_{2} & \cdots & \mathbf{S c}_{D}
\end{array}\right] \mathbf{C}^{\top} \\
& =\left[\begin{array}{llll}
\lambda_{1} \mathbf{c}_{1} & \lambda_{2} \mathbf{c}_{2} & \cdots & \lambda_{D} \mathbf{c}_{D}
\end{array}\right] \mathbf{C}^{\top} \\
& =\lambda_{1} \mathbf{c}_{1} \mathbf{c}_{1}^{\top}+\lambda_{2} \mathbf{c}_{2} \mathbf{c}_{2}^{\top}+\cdots+\lambda_{D} \mathbf{c}_{D} \mathbf{c}_{D}^{\top} \\
& =\mathbf{C D C}^{\top}
\end{aligned}
$$

- Matrix \mathbf{D} is diagonal, with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}$

Spectral decomposition

- $\mathbf{C D C}^{\top}$ is the spectral decomposition of \mathbf{S}
- Since \mathbf{C} is orthogonal and $\mathbf{C C}^{\top}=\mathbf{C}^{\top} \mathbf{C}=\mathbf{I}$

$$
\begin{aligned}
\mathbf{S} & =\mathbf{C D C}^{\top} \\
\mathbf{C}^{\top} \mathbf{S C} & =\mathbf{C}^{\top} \mathbf{C D C}^{\top} \mathbf{C} \\
\mathbf{C}^{\top} \mathbf{S C} & =\mathbf{D}
\end{aligned}
$$

- We know that $\operatorname{Cov}(\mathbf{z})=\mathbf{W}^{\top} \mathbf{S} \mathbf{W}$ and that we want $\operatorname{Cov}(\mathbf{z})$ to be diagonal
- We thus set $\mathbf{W}=\mathbf{C}$
12.6 PCA illustration

Proportion of variance

- Eigenvalue λ_{i} indicates the contribution of the component associated to the variance
- Proportion of the variance explained by the K principal components:

$$
\mathrm{PoV}=\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{K}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{K}+\cdots+\lambda_{D}}
$$

- High correlation between variables \Rightarrow few components with high eigenvalues
- Scree plot: plot of decreasing eigenvalue sorting

Scree plot

MNIST Scree plot

Proportion of variance explained

Example with PCA

Character reconstruction: 7 and 9

Character reconstruction: 1 and 7

PCA characteristics

- PCA explains the variance of datasets
- However sensitive to outliers, which greatly influence the variance
- Very interesting to visualize data
- For high dimensionality (D large), calculations on \mathbf{S} can be heavy $\left(O\left(D^{2}\right)\right)$
- There are methods to reduce calculations to an order of $O(K D)$
- Loss of significance of variables
- Construction of artificial variables corresponding to a linear combination of the original variables

Reconstruction error

- Data reconstruction
- Projection in space of z

$$
\mathbf{z}^{t}=\mathbf{W}^{\top}\left(\mathbf{x}^{t}-\boldsymbol{\mu}\right)
$$

- Since \mathbf{W} is orthogonal, $\mathbf{W W}^{\top}=\mathbf{I}$

$$
\begin{aligned}
\mathbf{W z}^{t} & =\mathbf{W W}^{\top}\left(\mathbf{x}^{t}-\boldsymbol{\mu}\right) \\
\hat{\mathbf{x}}^{t} & =\mathbf{W z}^{t}+\boldsymbol{\mu}
\end{aligned}
$$

- PCA minimizes reconstruction error

$$
\operatorname{err}_{\mathrm{recon}}=\sum_{t}\left\|\hat{\mathbf{x}}^{t}-\mathbf{x}^{t}\right\|^{2}
$$

- Reconstruction error depends directly on the number of components K used

Eigendigits

Eigenvector ${ }_{1}$

Eigenvector 2

Eigenvector $_{3}$

Eigenvector $_{500}$

Eigenvector $_{4}$

Eigenvector ${ }_{600}$

12.7 Whitening transformation

Whitening transformation

- Whitening transformation: center the mean of the data on the origin, remove all covariances and make the variance unitary.

$$
\mathbf{x} \sim \mathcal{N}_{D}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \stackrel{\text { whiten }}{\longrightarrow} \mathbf{z} \sim \mathcal{N}_{D}(0, \mathbf{I})
$$

- Linear transformation

$$
\mathbf{z}=\boldsymbol{\Sigma}^{-0.5}(\mathbf{x}-\mu)
$$

- Strong link with Mahalanobis distance

$$
D_{M}(\mathbf{x})=(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

- Mahalanobis distance corresponds to Euclidean distance squared in whitened space
- How to calculate $\boldsymbol{\Sigma}^{-0.5}$?

Spectral decomposition

- $\mathbf{C D C}^{\top}$ is the spectral decomposition of $\boldsymbol{\Sigma}$
- Since \mathbf{C} is orthogonal and $\mathbf{C C}^{\top}=\mathbf{C}^{\top} \mathbf{C}=\mathbf{I}$

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\mathbf{C D C}^{\top} \\
\mathbf{C}^{\top} \boldsymbol{\Sigma} \mathbf{C} & =\mathbf{C}^{\top} \mathbf{C D C}^{\top} \mathbf{C} \\
\mathbf{C}^{\top} \boldsymbol{\Sigma} \mathbf{C} & =\mathbf{D}
\end{aligned}
$$

- We know that $\operatorname{Cov}(\mathbf{z})=\mathbf{W}^{\top} \boldsymbol{\Sigma} \mathbf{W}$ and that we want $\operatorname{Cov}(\mathbf{z})$ to be diagonal
- We thus set $\mathbf{W}=\mathbf{C}$

Decomposition of the covariance matrix

- Decomposition of the covariance matrix

$$
\boldsymbol{\Sigma}=\mathbf{W D W}^{\top}
$$

- Eigenvectors of the covariance matrix

$$
\mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{D}
\end{array}\right]
$$

- Eigenvalues of the covariance matrix

$$
\mathbf{D}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{D}
\end{array}\right]
$$

Square root of the covariance matrix

- \mathbf{W} is orthogonal, so $\mathbf{W}^{-1}=\mathbf{W}^{\top}$
- Development of $\boldsymbol{\Sigma}^{0.5}$

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\mathbf{W D W}^{\top}=\mathbf{W D}^{0.5} \mathbf{D}^{0.5} \mathbf{W}^{\top} \\
& =\left(\mathbf{W D}^{0.5} \mathbf{W}^{\top}\right)\left(\mathbf{W D}^{0.5} \mathbf{W}^{\top}\right)=\boldsymbol{\Sigma}^{0.5} \boldsymbol{\Sigma}^{0.5} \\
\boldsymbol{\Sigma}^{-0.5} & =\left(\mathbf{W D}^{0.5} \mathbf{W}^{\top}\right)^{-1}=\mathbf{W D}^{-0.5} \mathbf{W}^{\top}
\end{aligned}
$$

- Matrix \mathbf{D} is diagonal, so

$$
\mathbf{D}^{-0.5}=\left[\begin{array}{cccc}
\lambda_{1}^{-0.5} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{-0.5} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{D}^{-0.5}
\end{array}\right]
$$

Summary

$$
\left.\begin{array}{rl}
\mathbf{x} & \sim \mathcal{N}_{D}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\mathbf{z} & =\boldsymbol{\Sigma}^{-0.5}(\mathbf{x}-\boldsymbol{\mu}) \\
& =\mathbf{W D}^{-0.5} \mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu}) \\
\text { where } \mathbf{W} & =\left[\mathbf{w}_{1} \mathbf{w}_{2}\right.
\end{array} \cdots \mathbf{w}_{D}\right] .
$$

Illustration of a whitening transformation

Illustration of a whitening transformation

12.8 Manifold learning

Manifold learning

- Manifold hypothesis: data are based on nonlinear space embedded in a higher dimensional space
- Manifold learning aims at extracting this space
- Non-linear methods of dimensionality reduction
- Example of the Swiss roll

[^0]
Multidimensional scaling

- Multidimensional scaling, MDS
- Find projection to a space of lower dimensionality preserving as much as possible the values of distance $\left\|\mathbf{x}^{i}, \mathbf{x}^{j}\right\|$ between all the data pairs of the set $\mathcal{X}=\left\{\mathbf{x}^{t}\right\}_{t=1}^{N}$
- Sammon's method: determine nonlinear projection $\mathrm{g}(\mathbf{x} \mid \theta)$ that minimizes

$$
E(\theta \mid \mathcal{X})=\sum_{t=1, \ldots, N} \sum_{\substack{s=1, \ldots, N \\ s \neq t}} \frac{\left(\left\|\mathrm{~g}\left(\mathbf{x}^{t} \mid \theta\right)-\mathrm{g}\left(\mathbf{x}^{s} \mid \theta\right)\right\|-\left\|\mathbf{x}^{t}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{t}-\mathbf{x}^{s}\right\|^{2}}
$$

- $\theta^{*}=\operatorname{argmin}_{\theta} E(\theta \mid \mathcal{X})$
- $\mathrm{g}(\mathbf{x} \mid \theta)$ can be a polynomial regression, kernel regression, neural network, etc.
- Measure of arbitrary distance $\|\cdot\|$, does not have to be Euclidean distance

Multidimensional scaling

- Position 128 North American cities based on road distances between them only

t-SNE (t-distributed Stochastic Neighbour Embedding) 1/2

- Determine projection of each data in low dimensionality by preserving the neighbourhood of the original space
- In practice, useful to visualize data in a 2D or 3D space
- Determine probability to be neighbours between the pairs of the set $\mathcal{X}=\left\{\mathbf{x}^{t}\right\}_{t=1}^{N}$ in the original space
- Probability $p_{j \mid i}$ of selecting \boldsymbol{x}^{j} as neighbour of \mathbf{x}^{i}

$$
p_{j \mid i}=\frac{\exp \left(-\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}^{i}-\mathbf{x}^{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}
$$

- Probability $p_{i, j}=\frac{p_{i j j}+p_{j \mid i}}{2 N}$ that x^{j} is selected as neighbour of x^{i} according to a normal law centered on $\mathbf{x}^{i}\left(p_{i, i}=0\right)$
- σ_{i}^{2} is adjusted locally for each data (bisection method)

t-SNE (t-distributed Stochastic Neighbour Embedding) 2/2

- Determining the probability of being neighbour between pairs of instances in low dimensional space
- \mathbf{z}^{t} is the projection of \mathbf{x}^{t} in low dimensional space
- Probability $q_{i, j}$ assuming a Student's Law

$$
q_{i, j}=\frac{\left(1-\left\|\mathbf{z}^{i}-\mathbf{z}^{j}\right\|^{2}\right)^{-1}}{\sum_{\substack{k=1, \ldots, i, N \\ k \neq i}}\left(1-\left\|\mathbf{z}^{i}-\mathbf{z}^{k}\right\|^{2}\right)^{-1}}
$$

- Learn projections $\mathbf{z}=g(\mathbf{x} \mid \theta)$ of the points in low dimensionality in order to minimize the divergence between these probabilities.

$$
\begin{aligned}
E(\theta \mid \mathcal{X}) & =K L(P \| Q)=\sum_{t=1, \ldots, N} \sum_{\substack{k=1, \ldots, N \\
k \neq t}} p_{t, k} \log \frac{p_{t, k}}{q_{t, k} \mid \theta} \\
\theta^{*} & =\underset{\theta}{\operatorname{argmin}} E(\theta \mid \mathcal{X})
\end{aligned}
$$

Manifold learning comparison

MDS embedding of the digits (time 7.21 s)

12.9 Preprocessing and data analysis with scikit-learn

Scikit-learn: scaling, standardization and imputation

- Scaling and standardization
- preprocessing.MinMaxScaler: adjust the scale according to minimum/maximum values
- preprocessing.scale: standardization so that variables follow a normal centered-reduced law
- Imputation
- impute.SimpleImputer: imputing values to a fixed value for each variable
- strategy: strategy used for simple imputation, either a mean value (mean), a median value (median), a more frequent value (most_frequent), or a constant (constant)
- impute.MissingIndicator: get a mask indicating missing variables of a dataset

Scikit-learn: feature selection

- Univariate selection
- feature_selection.VarianceThreshold: select feature with variance greater than a given threshold
- feature_selection.SelectKBest (SelectPercentile): retains the best K (top percentile) features according to a given performance measure
- chi2: χ^{2} test between features
- f_classif: ANOVA test between features
- mutual_info_classif: mutual information criterion
- feature_selection.RFE: backward selection according to model coefficients
- estimator (object): learning model used for selection
- n_features_to_select (int): total number of features to be selected
- step (int or float)
- If ≥ 1, number of features removed at each iteration
- If $[0,1)$, ratio of the number of features removed at each iteration
- feature_selection.SelectFromModel: selection from a model (e.g. according to coefficients)

Scikit-learn: principal component analysis

- decomposition.PCA: principal component analysis
- Parameters
- $\mathrm{n}_{\text {_components (int): number of components to keep, by default } K=\min (N, D), ~(1)}$
- whiten (bool): normalizes by eigenvectors, thus performing a whitening transformation
- Attributes
- components_ (array): vectors of the principal components (size $K \times D$)
- explained_variance_ (array): variance explained by each component (vector of size K)
- explained_variance_ratio_ (array): proportion of the variance explained by each component (vector of size K)

Scikit-learn: manifold learning

- manifold.MDS: multidimensional scaling
- n_components (int): dimensionality of the destination space
- metric (bool): metric or not
- dissimilarity: measure of distance, i.e. euclidean (default) or precomputed
- manifold.TSNE: t-SNE
- n_components (int): dimensionality of the destination space
- perplexity (float): linked to the number of neighbours used (default: 30)
- Other non-linear manifold learning algorithms
- manifold.Isomap: Isomap algorithm
- manifold.LocallyLinearEmbedding: LLE algorithm
- manifold.SpectralEmbedding: Laplacian eigenmaps algorithm

[^0]: By Olivier Grisel, CC-BY 3.0, https://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png.

