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12.1 Data preprocessing



Importance of preprocessing

• Learning algorithms are sensitive to input values

• Scales of variables must be comparable

• Larger scale variables are dominant in measures of similarity (e.g. Gaussian kernel)

and distance (e.g. Euclidean, Manhattan)

• High input values cause saturation of sigmoid neurons

• Variables may sometimes be missing

• Defective sensor, omissions during data collection, measurements added along the way

• High dimensionality

• Sensitivity of algorithms to dimensionality

• Redundancy in measurements

• Data preprocessing is essential in practice

• Rarely have access to well formatted and complete data, ready to be used

• Important to understand the nature of the data in order to process it properly

1



Scaling

• Scale adjustment of variables

• Common approach: bring the range of possible values back into [0, 1]

• Make scaling on each variable independently

x ′i =
xi − xmin

i

xmax
i − xmin

i

, i = 1, . . . ,D

where:

xmax
i = max

t=1,...,N
x ti , i = 1, . . . ,D

xmin
i = min

t=1,...,N
x ti , i = 1, . . . ,D

• Scaling values calculated on a given dataset

• New data could have value of variable Xi outside the domain [xmin
i , xmax

i ]

• Simple approach that often does a reasonable job
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Standardization

• Standardization: bring the distribution of each variable back to a reduced normal
centered distribution, x ′i ∼ N (0,1)

• Center the mean at zero and adjust for a unit standard deviation

x ′i =
xi − µi

σi
, i = 1, . . . ,D

• Less sensitive to outliers than a scaling

• Independent variables treatment

• Does not remove the covariance between the variables, Σ 6= I

• Whitening transformation (presented later today) allows to obtain data according to

a unit normal distribution, x′ ∼ ND(0,I)
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Imputation

• What to do if variable values are missing?

• Remove data with missing values

• Loss of data for learning

• Possible bias in removed data

• Mark missing variables for the learning algorithm

• Some learning algorithms can handle missing variables

• Assign a default value to the missing variables (typically zero)

• Randomly select from the other data and assign its value to the missing variable

• Assign mean value of the variable, x ′i = x̄i

• Reduces the measured variance of the variable in the dataset
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Regression for imputation

• Replacing missing variables can distort the data

• How to assign a plausible value to missing values?

• Use supervised learning to fill in missing values

• For each variable, learn regression model to impute missing values

x ′i = f([x1 . . . xi−1 xi+1, . . . ,xD ]>|θi )

• The targets r t used to learn parameterization θi correspond to the values xi for the

data where they are not missing

• Values more representative of the data, but can still reduce the variance as

regression will capture the most likely values
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12.2 Feature selection



Dimensionality reduction

• Dimensionality reduction

• Go from a space with D dimensions to a space with K dimensions, where K < D

X1, . . . ,XD 7→ X ′1, . . . ,X
′
K

• Possible approaches

• Feature selection: choose K variables among the possible D variables

X1, . . . ,XD 7→ Xv1 , . . . ,XvK

vi ∈ {1, . . . ,D} | vi 6= vj , ∀j ≤ i

• Feature extraction: generate K variables as transformations of the original D

variables

X1, . . . ,XD 7→ f1(X1, . . . ,XD), . . . ,fK (X1, . . . ,XD)
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Reasons for reducing dimensionality

• Curse of dimensionality

• Adding a dimension exponentially increases mathematical space

• 100 points equidistant by 0.01 in one dimension ⇒ 1020 needed in 10 dimensions to

keep the same density

• High dimensionality: high computational and memory complexity

• Saving measurement costs

• The simpler a model is, the less variance there is

• Easier to explain with fewer variables: knowledge extraction

• Viewing data: analyzing results
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Curse of dimensionality

Source: Y. Bengio, http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg, accessed October 2, 2016. 8

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg


Feature selection

• Objective: find a subset of K variables among {X1, . . . ,XD}, while preserving the

performance

• Number of possible subsets:

(
D

K

)

(
10

5

)
= 252,

(
50

10

)
≈ 1010,

(
100

20

)
≈ 1020

• Heuristics: the art of inventing, of making discoveries

• Algorithm that quickly provides (in polynomial time) a feasible, not necessarily

optimal solution

• As opposed to an exact algorithm that finds an optimal solution
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Evaluations of subsets of features

• Filter approach

• Calculate performance without a new training, with indirect measurement (proxy)

• Not very demanding in calculation, but mixed results

• Wrapper approach

• For each candidate set of features, train a new classifier

• Empirical error assessment (training, validation, cross-validation, etc.)

• Much more expensive in calculation time

• Embedded approach: feature selection integrated in model learning
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Univariate selection

• Select according to performance measurement of individual features

• Basic approach: select features for which variance exceeds a threshold

• Assumes that the variance accurately describes the usefulness of each feature for

classification

• Good for filtering features of very low or zero variance (avoid singular covariance

matrices)

• Selection according to other criteria

• Correlation between features (keep set of decorrelated variables)

• Mutual information between the feature and the target value

I (i) =

∫

Xi

∫

r

p(Xi ,r) log
p(Xi ,r)

p(Xi ) p(r)
dr dXi

• Effect on empirical error, with imputation of unselected variables
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Forward sequential selection

• Gradually build the feature set, adding the most promising variable

1. Starting with an empty feature set

2. Add the feature that improves the most (according to a certain criterion) the set of

features

3. Repeat step 2 as long as the stop criterion is not reached

• Greedy algorithm: making iterative local decisions

• Does not account for complex relationships between variables

• Example:

• Variables Xa, Xb and Xc taken individually or in pairs ⇒ low gain

• The three variables taken together ⇒ high gain

• Algorithmic complexity O(KD)
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Forward Sequential Selection Algorithm

1. Initialize the algorithm:
• Create the set of selected features:

F 0 = ∅
• Create the set of unselected features:

G 0 = {X1, . . . ,XD}

2. For t = 1, . . . ,D, as long as the stop criterion is not reached:
2.1 Determine the feature that reduces the most the error:

Xj = argmin
Xi∈G t−1

E (F t−1 + {Xi})

2.2 Select this feature by adding it to F and removing it from G :

F t = F t−1 + {Xj}, G t = G t−1\{Xj}
3. Return the final subset F of selected features 13



Stopping criteria

• Possible stopping criteria

• Stop when K features are selected

• Stop when all features are selected

• Return the set of features that lead to minimal empirical error

• Stop when error reduction is below a threshold

E (F t)− E (F t+1) < ε
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Backward sequential selection

• Reverse approach: start with all variables and iteratively remove those that

contribute the least.

1. Create the set of selected features:

FD = {X1, . . . ,XD}
2. For t = D − 1,D − 2, . . . ,1, as long as the stop criterion is not reached:

2.1 Determine the least contributing feature:

Xj = argmin
Xi∈F t+1

E (F t+1\{Xi})

2.2 Remove this feature from F :

F t = F t+1\{Xj}
3. Return the final subset F of selected features
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Other approaches for feature selection

• Add-l-remove-r

• Hybrid between forward and backward sequential approaches, avoids some local

minima

• Branch-and-bound

• Organize features into trees, according to their similarities

• Reduction by cutting into the tree to eliminate similar features

• Multi-objective evolutionary algorithm

• Population-based stochastic optimization inspired by natural evolution

• Global search: one individual = a subset of features

• Optimization according to two objectives simultaneously: reducing the error and

reducing the number of selected features
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12.3 Principal component analysis



Feature extraction

• Feature selection

• Advantage: allows to remove completely from the measurements

• Drawback: sometimes several variables are poor in information when taken

individually, but rich in information when taken collectively

• Example: object recognition from image pixels

• Feature extraction

• Projection from a space with D dimensions to a space with K dimensions

• Advantage: allows to compress the information to a space of reduced dimensionality

• Drawback: requires taking all original D measurements
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Reminder: linear transformations

• Translation in a space

y = x + u

• Linear transformation according to matrix A of size K × D

y = Ax

• Rotation in a space (example in 2D)

A =

[
cos θ − sin θ

sin θ cos θ

]

• General formulation

y = A(x + u)
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Principal component analysis

• Principal component analysis (PCA)

• Linear projection in a space with K dimensions, with minimal loss of information

• Variance = information

• Consists in extracting vectors in the directions of maximum variances

• Unsupervised: uses only measurements, not class labels

• 1st principal component: direction of maximum variance

• 2nd principal component: direction of maximum variance orthogonal to the first

component

• Linear transformation, centered on the mean vector

z = W>(x− µ)
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Illustration of PCA
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12.4 PCA derivation



Lagrange multipliers

• Method for solving optimization problems under constraints

• Example: maximize f (x) under constraints that g(x) = 0

• There is a parameter λ 6= 0 so that

∇f + λ∇g = 0

• Corresponding equation with Lagrange multiplier

L(x,λ) ≡ f (x) + λg(x)

• Maximum obtained by finding ∇L(x,λ) = 0

• If we are only interested in x, we can eliminate λ without having to evaluate it
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Example with the Lagrange multiplier

• Maximize f (x1,x2) = 1− x21 − x22 subject to constraint g(x1,x2) = x1 + x2 − 1 = 0

• Formulation with Lagrange multiplier

L(x1,x2,λ) = 1− x21 − x22 + λ(x1 + x2 − 1)

• Resolution of ∇L(x1,x2,λ) = 0

∂L

∂x1
= −2x1 + λ = 0

∂L

∂x2
= −2x2 + λ = 0

∂L

∂λ
= x1 + x2 − 1 = 0

• Solution to the system of equations: x1 = 0.5, x2 = 0.5 and λ = 1
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Example with the Lagrange multiplier

g(x1,x2) = x1 + x2 � 1 = 0
<latexit sha1_base64="X2t/B+QjGGu9AuLryxubnJEeifI=">AAACI3icbZDLSsNAFIYn9VbrLSq4cRMsQkUtSRXsplBw47KCvUAbwmQ6aYfOTMLMRFpiX0ZwpW/iTty48DVcO22zsK0/DHz85xzOmd+PKJHKtr+MzMrq2vpGdjO3tb2zu2fuHzRkGAuE6yikoWj5UGJKOK4roihuRQJD5lPc9Ae3k3rzEQtJQv6gRhF2GexxEhAElbY886hXGHrOxdArnVU0nGu4dCq2Z+btoj2VtQxOCnmQquaZP51uiGKGuUIUStl27Ei5CRSKIIrHuU4scQTRAPZwWyOHDEs3md4/tk6107WCUOjHlTV1/04kkEk5Yr7uZFD15WJtYv5Xa8cqKLsJ4VGsMEezRUFMLRVakzCsLhEYKTrSAJEg+lYL9aGASOnI5rYQFDIG5/6R+Gyc00E5i7EsQ6NUdK6KpfvrfLWcRpYFx+AEFIADbkAV3IEaqAMEnsAzeAVvxovxbnwYn7PWjJHOHII5Gd+/ABWixQ==</latexit>

f(x1,x2) = 1 � x2
1 � x2

2
<latexit sha1_base64="OJS5NjESZwxMCcuMz/cprKH71KE=">AAACJXicbVDLSgMxFM3UV62vUTeCm2ARKmiZGQW7EQpuXFawD2inQybNtKHJzJBkpGWoXyO40j9xJ4Ir/8K16WNhWw8kHM65l3vv8WNGpbKsLyOzsrq2vpHdzG1t7+zumfsHNRklApMqjlgkGj6ShNGQVBVVjDRiQRD3Gan7/duxX38kQtIofFDDmLgcdUMaUIyUljzzKCgMPPt84DlnN/aFpm1H/07b8cy8VbQmgMvEnpE8mKHimT+tToQTTkKFGZKyaVuxclMkFMWMjHKtRJIY4T7qkqamIeJEuunkghE81UoHBpHQL1Rwov7tSBGXcsh9XcmR6slFbyz+5zUTFZTclIZxokiIp4OChEEVwXEcsEMFwYoNNUFYUL0rxD0kEFY6tLkpFEeco7k7Up+PcjooezGWZVJzivZl0bm/ypdLs8iy4BicgAKwwTUogztQAVWAwRN4Bq/gzXgx3o0P43NamjFmPYdgDsb3L4AIo40=</latexit>

23



PCA derivation

• First principal component w1: direction of the main variance

z1 = w>1 x

• Only the direction is important, ‖w1‖ = 1

• If Cov(x) = Σ then Var(z1) = w>1 Σw1

E[w>x] = w>E[x] = w>µ

Var(w>x) = E
[
(w>x−w>µ)2

]

= E
[
(w>x−w>µ)(w>x−w>µ)>

]

= E
[
w>(x− µ)(x− µ)>w

]

= w>E
[
(x− µ)(x− µ)>

]
w

= w>Σw
24



First principal component

• We look for the vector w1 which maximizes Var(z1), with constraint w>1 w1 = 1

• Resolution by Lagrange method

L(w1,α) = w>1 Σw1 − α
(
w>1 w1 − 1

)

∂L(w1,α)

∂w1
= 2Σw1 − 2αw1 = 0

Σw1 = αw1

• By definition, Σw1 = αw1 is true when w1 is an eigenvector of Σ and that α is

the associated eigenvalue

• We choose the eigenvector with the largest eigenvalue, α = λ1, given that:

Var(w>1 x) = w>1 Σw1 = αw>1 w1 = α
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Second principal component

• Vector w2 maximizes Var(z2)
• Constraint 1: w2 is unitary, w>2 w2 = 1

• Constraint 2: w2 is orthogonal to w1, w>2 w1 = 0

• Resolution by Lagrange method

L(w1,w2,α,β) = w>2 Σw2 − α
(
w>2 w2 − 1

)
− β(w>2 w1 − 0)

∂L(w1,w2,α,β)

∂w2
= 2Σw2 − 2αw2 − βw1 = 0

w>1
∂L(w1,w2,α,β)

∂w2
= 2w>1 Σw2 − 2αw>1 w2 − βw>1 w1 = 0

• Given that Σw1 = λ1w1, then:

w>1 Σw2 = w>2 Σw1 = λ1w
>
2 w1 = 0

2w>1 Σw2 − 2αw>1 w2 − βw>1 w1 = −βw>1 w1 = 0 ⇒ β = 0

• So we simplify 2Σw2 − 2αw2 − βw1 = 0

Σw2 = αw2

26



Second principal component

• Σw2 = αw2 implies that w2 is also an eigenvector of Σ

• Since we want to maximize Var(w>2 x), we choose the eigenvector associated with

the second largest eigenvalue, α = λ2

• We proceed in the same way for the other dimensions, by choosing as wi the

eigenvectors, in decreasing order of associated eigenvalues

• Rotation matrix W = [w1 w2 · · · wK ] thus contains the K ≤ D first eigenvectors

(with higher eigenvalues)

• Additional properties

• Since Σ is symmetric, eigenvectors are orthogonal

• Since wi are unitary, they form an orthonormal base

• If Σ is defined as positive (x>Σx > 0, ∀x 6= 0), all eigenvalues are non-zero,

λi 6= 0, ∀λi
• Otherwise, the rank of Σ gives the number of non-zero eigenvalues
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Eigenvalues/eigenvectors and PCA
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ACP as a linear transformation

z = W>(x−m)
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12.5 Alternative PCA derivation



Alternative derivation

• Alternative PCA derivation
• Search for a transformation z = W>x, where variables of z are uncorrelated

• Consists in looking for W so that Cov(z) = D′ is diagonal

• Suppose C, matrix D ×D, where column ci is i-th eigenvector of S, the estimator
of Σ.
• So CC> = C>C = I

S = SCC>

= S[c1 c2 · · · cD ]C>

= [Sc1 Sc2 · · · ScD ]C>

= [λ1c1 λ2c2 · · · λDcD ]C>

= λ1c1c
>
1 + λ2c2c

>
2 + · · ·+ λDcDc

>
D

= CDC>

• Matrix D is diagonal, with eigenvalues λ1,λ2, . . . ,λD 30



Spectral decomposition

• CDC> is the spectral decomposition of S

• Since C is orthogonal and CC> = C>C = I

S = CDC>

C>SC = C>CDC>C

C>SC = D

• We know that Cov(z) = W>SW and that we want Cov(z) to be diagonal

• We thus set W = C
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12.6 PCA illustration



Proportion of variance

• Eigenvalue λi indicates the contribution of the component associated to the

variance

• Proportion of the variance explained by the K principal components:

PoV =
λ1 + λ2 + · · ·+ λK

λ1 + λ2 + · · ·+ λK + · · ·+ λD

• High correlation between variables ⇒ few components with high eigenvalues

• Scree plot: plot of decreasing eigenvalue sorting
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Scree plot
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Example with PCA
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Character reconstruction: 7 and 9

M = 1 M = 2 M = 20 M = 200Original
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Character reconstruction: 1 and 7

M = 1 M = 2 M = 20 M = 200Original
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PCA characteristics

• PCA explains the variance of datasets

• However sensitive to outliers, which greatly influence the variance

• Very interesting to visualize data

• For high dimensionality (D large), calculations on S can be heavy (O(D2))

• There are methods to reduce calculations to an order of O(KD)

• Loss of significance of variables

• Construction of artificial variables corresponding to a linear combination of the

original variables
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Reconstruction error

• Data reconstruction

• Projection in space of z

zt = W>(xt − µ)

• Since W is orthogonal, WW> = I

Wzt = WW>(xt − µ)

x̂t = Wzt + µ

• PCA minimizes reconstruction error

errrecon =
∑

t

‖x̂t − xt‖2

• Reconstruction error depends directly on the number of components K used
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Eigendigits

Eigenvector1 Eigenvector2 Eigenvector3 Eigenvector4

Eigenvector300 Eigenvector400 Eigenvector500 Eigenvector600
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12.7 Whitening transformation



Whitening transformation

• Whitening transformation: center the mean of the data on the origin, remove all

covariances and make the variance unitary.

x ∼ ND(µ,Σ)
whiten7→ z ∼ ND(0,I)

• Linear transformation

z = Σ−0.5(x− µ)

• Strong link with Mahalanobis distance

DM(x) = (x− µ)>Σ−1(x− µ)

• Mahalanobis distance corresponds to Euclidean distance squared in whitened space

• How to calculate Σ−0.5?
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Spectral decomposition

• CDC> is the spectral decomposition of Σ

• Since C is orthogonal and CC> = C>C = I

Σ = CDC>

C>ΣC = C>CDC>C

C>ΣC = D

• We know that Cov(z) = W>ΣW and that we want Cov(z) to be diagonal

• We thus set W = C
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Decomposition of the covariance matrix

• Decomposition of the covariance matrix

Σ = WDW>

• Eigenvectors of the covariance matrix

W = [w1 w2 · · · wD ]

• Eigenvalues of the covariance matrix

D =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λD



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Square root of the covariance matrix

• W is orthogonal, so W−1 = W>

• Development of Σ0.5

Σ = WDW> = WD0.5D0.5W>

= (WD0.5W>)(WD0.5W>) = Σ0.5Σ0.5

Σ−0.5 = (WD0.5W>)−1 = WD−0.5W>

• Matrix D is diagonal, so

D−0.5 =




λ−0.51 0 · · · 0

0 λ−0.52 · · · 0
...

...
. . .

...

0 0 · · · λ−0.5D



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Summary

x ∼ ND(µ,Σ)

z = Σ−0.5(x− µ)

= WD−0.5W>(x− µ)

where W = [w1 w2 · · · wD ]

and D−0.5 =




λ−0.51 0 · · · 0

0 λ−0.52 · · · 0
...

...
. . .

...

0 0 · · · λ−0.5D




z ∼ ND(0,I)
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Illustration of a whitening transformation
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Illustration of a whitening transformation
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12.8 Manifold learning



Manifold learning

• Manifold hypothesis: data are based on nonlinear space embedded in a higher
dimensional space
• Manifold learning aims at extracting this space

• Non-linear methods of dimensionality reduction

• Example of the Swiss roll

By Olivier Grisel, CC-BY 3.0, https://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png.
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Multidimensional scaling

• Multidimensional scaling, MDS

• Find projection to a space of lower dimensionality preserving as much as possible the

values of distance ‖xi ,xj‖ between all the data pairs of the set X = {xt}Nt=1

• Sammon’s method: determine nonlinear projection g(x|θ) that minimizes

E (θ|X ) =
∑

t=1,...,N

∑

s=1,...,N
s 6=t

(‖g(xt |θ)− g(xs |θ)‖ − ‖xt − xs‖)2
‖xt − xs‖2

• θ∗ = argminθ E (θ|X )

• g(x|θ) can be a polynomial regression, kernel regression, neural network, etc.

• Measure of arbitrary distance ‖ · ‖, does not have to be Euclidean distance
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Multidimensional scaling

• Position 128 North American cities based on road distances between them only

2000 1000 0 1000

z1  (km)

2000

1000

0

1000

2000

z 2
  (

km
)

Canada
USA
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t-SNE (t-distributed Stochastic Neighbour Embedding) 1/2

• Determine projection of each data in low dimensionality by preserving the
neighbourhood of the original space

• In practice, useful to visualize data in a 2D or 3D space

• Determine probability to be neighbours between the pairs of the set X = {xt}Nt=1

in the original space

• Probability pj|i of selecting xj as neighbour of xi

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )

• Probability pi,j =
pi|j+pj|i

2N that xj is selected as neighbour of xi according to a normal

law centered on xi (pi,i = 0)

• σ2
i is adjusted locally for each data (bisection method)

50



t-SNE (t-distributed Stochastic Neighbour Embedding) 2/2

• Determining the probability of being neighbour between pairs of instances in low
dimensional space
• zt is the projection of xt in low dimensional space

• Probability qi,j assuming a Student’s Law

qi,j =
(1− ‖zi − zj‖2)−1∑

k=1,...,N
k 6=i

(1− ‖zi − zk‖2)−1

• Learn projections z = g(x|θ) of the points in low dimensionality in order to

minimize the divergence between these probabilities.

E (θ|X ) = KL(P‖Q) =
∑

t=1,...,N

∑

k=1,...,N
k 6=t

pt,k log
pt,k
qt,k |θ

θ∗ = argmin
θ

E (θ|X )
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Manifold learning comparison

Source: https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html, accessed November 26, 2018, code licensed under

BSD 3.
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12.9 Preprocessing and data

analysis with scikit-learn



Scikit-learn: scaling, standardization and imputation

• Scaling and standardization

• preprocessing.MinMaxScaler: adjust the scale according to minimum/maximum

values

• preprocessing.scale: standardization so that variables follow a normal

centered-reduced law

• Imputation

• impute.SimpleImputer: imputing values to a fixed value for each variable

• strategy: strategy used for simple imputation, either a mean value (mean), a median

value (median), a more frequent value (most_frequent), or a constant (constant)

• impute.MissingIndicator: get a mask indicating missing variables of a dataset
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Scikit-learn: feature selection

• Univariate selection
• feature_selection.VarianceThreshold: select feature with variance greater

than a given threshold

• feature_selection.SelectKBest (SelectPercentile): retains the best K (top

percentile) features according to a given performance measure

• chi2: χ2 test between features

• f_classif: ANOVA test between features

• mutual_info_classif: mutual information criterion

• feature_selection.RFE: backward selection according to model coefficients
• estimator (object): learning model used for selection

• n_features_to_select (int): total number of features to be selected

• step (int or float)

• If ≥1, number of features removed at each iteration

• If [0,1), ratio of the number of features removed at each iteration

• feature_selection.SelectFromModel: selection from a model (e.g. according

to coefficients) 54



Scikit-learn: principal component analysis

• decomposition.PCA: principal component analysis

• Parameters

• n_components (int): number of components to keep, by default K = min(N,D)

• whiten (bool): normalizes by eigenvectors, thus performing a whitening

transformation

• Attributes

• components_ (array): vectors of the principal components (size K × D)

• explained_variance_ (array): variance explained by each component (vector of size

K)

• explained_variance_ratio_ (array): proportion of the variance explained by each

component (vector of size K)
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Scikit-learn: manifold learning

• manifold.MDS: multidimensional scaling

• n_components (int): dimensionality of the destination space

• metric (bool): metric or not

• dissimilarity: measure of distance, i.e. euclidean (default) or precomputed

• manifold.TSNE: t-SNE

• n_components (int): dimensionality of the destination space

• perplexity (float): linked to the number of neighbours used (default: 30)

• Other non-linear manifold learning algorithms

• manifold.Isomap: Isomap algorithm

• manifold.LocallyLinearEmbedding: LLE algorithm

• manifold.SpectralEmbedding: Laplacian eigenmaps algorithm
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