
Data Preprocessing and Analysis

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 12

12.1 Data preprocessing

Importance of preprocessing

• Learning algorithms are sensitive to input values

• Scales of variables must be comparable

• Larger scale variables are dominant in measures of similarity (e.g. Gaussian kernel)

and distance (e.g. Euclidean, Manhattan)

• High input values cause saturation of sigmoid neurons

• Variables may sometimes be missing

• Defective sensor, omissions during data collection, measurements added along the way

• High dimensionality

• Sensitivity of algorithms to dimensionality

• Redundancy in measurements

• Data preprocessing is essential in practice

• Rarely have access to well formatted and complete data, ready to be used

• Important to understand the nature of the data in order to process it properly

1

Scaling

• Scale adjustment of variables

• Common approach: bring the range of possible values back into [0, 1]

• Make scaling on each variable independently

x ′i =
xi − xmin

i

xmax
i − xmin

i

, i = 1, . . . ,D

where:

xmax
i = max

t=1,...,N
x ti , i = 1, . . . ,D

xmin
i = min

t=1,...,N
x ti , i = 1, . . . ,D

• Scaling values calculated on a given dataset

• New data could have value of variable Xi outside the domain [xmin
i , xmax

i]

• Simple approach that often does a reasonable job

2

Standardization

• Standardization: bring the distribution of each variable back to a reduced normal
centered distribution, x ′i ∼ N (0,1)

• Center the mean at zero and adjust for a unit standard deviation

x ′i =
xi − µi

σi
, i = 1, . . . ,D

• Less sensitive to outliers than a scaling

• Independent variables treatment

• Does not remove the covariance between the variables, Σ 6= I

• Whitening transformation (presented later today) allows to obtain data according to

a unit normal distribution, x′ ∼ ND(0,I)

3

Imputation

• What to do if variable values are missing?

• Remove data with missing values

• Loss of data for learning

• Possible bias in removed data

• Mark missing variables for the learning algorithm

• Some learning algorithms can handle missing variables

• Assign a default value to the missing variables (typically zero)

• Randomly select from the other data and assign its value to the missing variable

• Assign mean value of the variable, x ′i = x̄i

• Reduces the measured variance of the variable in the dataset

4

Regression for imputation

• Replacing missing variables can distort the data

• How to assign a plausible value to missing values?

• Use supervised learning to fill in missing values

• For each variable, learn regression model to impute missing values

x ′i = f([x1 . . . xi−1 xi+1, . . . ,xD]>|θi)

• The targets r t used to learn parameterization θi correspond to the values xi for the

data where they are not missing

• Values more representative of the data, but can still reduce the variance as

regression will capture the most likely values

5

12.2 Feature selection

Dimensionality reduction

• Dimensionality reduction

• Go from a space with D dimensions to a space with K dimensions, where K < D

X1, . . . ,XD 7→ X ′1, . . . ,X
′
K

• Possible approaches

• Feature selection: choose K variables among the possible D variables

X1, . . . ,XD 7→ Xv1 , . . . ,XvK

vi ∈ {1, . . . ,D} | vi 6= vj , ∀j ≤ i

• Feature extraction: generate K variables as transformations of the original D

variables

X1, . . . ,XD 7→ f1(X1, . . . ,XD), . . . ,fK (X1, . . . ,XD)

6

Reasons for reducing dimensionality

• Curse of dimensionality

• Adding a dimension exponentially increases mathematical space

• 100 points equidistant by 0.01 in one dimension ⇒ 1020 needed in 10 dimensions to

keep the same density

• High dimensionality: high computational and memory complexity

• Saving measurement costs

• The simpler a model is, the less variance there is

• Easier to explain with fewer variables: knowledge extraction

• Viewing data: analyzing results

7

Curse of dimensionality

Source: Y. Bengio, http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg, accessed October 2, 2016. 8

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg

Feature selection

• Objective: find a subset of K variables among {X1, . . . ,XD}, while preserving the

performance

• Number of possible subsets:

(
D

K

)

(
10

5

)
= 252,

(
50

10

)
≈ 1010,

(
100

20

)
≈ 1020

• Heuristics: the art of inventing, of making discoveries

• Algorithm that quickly provides (in polynomial time) a feasible, not necessarily

optimal solution

• As opposed to an exact algorithm that finds an optimal solution

9

Evaluations of subsets of features

• Filter approach

• Calculate performance without a new training, with indirect measurement (proxy)

• Not very demanding in calculation, but mixed results

• Wrapper approach

• For each candidate set of features, train a new classifier

• Empirical error assessment (training, validation, cross-validation, etc.)

• Much more expensive in calculation time

• Embedded approach: feature selection integrated in model learning

10

Univariate selection

• Select according to performance measurement of individual features

• Basic approach: select features for which variance exceeds a threshold

• Assumes that the variance accurately describes the usefulness of each feature for

classification

• Good for filtering features of very low or zero variance (avoid singular covariance

matrices)

• Selection according to other criteria

• Correlation between features (keep set of decorrelated variables)

• Mutual information between the feature and the target value

I (i) =

∫

Xi

∫

r

p(Xi ,r) log
p(Xi ,r)

p(Xi) p(r)
dr dXi

• Effect on empirical error, with imputation of unselected variables

11

Forward sequential selection

• Gradually build the feature set, adding the most promising variable

1. Starting with an empty feature set

2. Add the feature that improves the most (according to a certain criterion) the set of

features

3. Repeat step 2 as long as the stop criterion is not reached

• Greedy algorithm: making iterative local decisions

• Does not account for complex relationships between variables

• Example:

• Variables Xa, Xb and Xc taken individually or in pairs ⇒ low gain

• The three variables taken together ⇒ high gain

• Algorithmic complexity O(KD)

12

Forward Sequential Selection Algorithm

1. Initialize the algorithm:
• Create the set of selected features:

F 0 = ∅
• Create the set of unselected features:

G 0 = {X1, . . . ,XD}

2. For t = 1, . . . ,D, as long as the stop criterion is not reached:
2.1 Determine the feature that reduces the most the error:

Xj = argmin
Xi∈G t−1

E (F t−1 + {Xi})

2.2 Select this feature by adding it to F and removing it from G :

F t = F t−1 + {Xj}, G t = G t−1\{Xj}
3. Return the final subset F of selected features 13

Stopping criteria

• Possible stopping criteria

• Stop when K features are selected

• Stop when all features are selected

• Return the set of features that lead to minimal empirical error

• Stop when error reduction is below a threshold

E (F t)− E (F t+1) < ε

14

Backward sequential selection

• Reverse approach: start with all variables and iteratively remove those that

contribute the least.

1. Create the set of selected features:

FD = {X1, . . . ,XD}
2. For t = D − 1,D − 2, . . . ,1, as long as the stop criterion is not reached:

2.1 Determine the least contributing feature:

Xj = argmin
Xi∈F t+1

E (F t+1\{Xi})

2.2 Remove this feature from F :

F t = F t+1\{Xj}
3. Return the final subset F of selected features

15

Other approaches for feature selection

• Add-l-remove-r

• Hybrid between forward and backward sequential approaches, avoids some local

minima

• Branch-and-bound

• Organize features into trees, according to their similarities

• Reduction by cutting into the tree to eliminate similar features

• Multi-objective evolutionary algorithm

• Population-based stochastic optimization inspired by natural evolution

• Global search: one individual = a subset of features

• Optimization according to two objectives simultaneously: reducing the error and

reducing the number of selected features

16

12.3 Principal component analysis

Feature extraction

• Feature selection

• Advantage: allows to remove completely from the measurements

• Drawback: sometimes several variables are poor in information when taken

individually, but rich in information when taken collectively

• Example: object recognition from image pixels

• Feature extraction

• Projection from a space with D dimensions to a space with K dimensions

• Advantage: allows to compress the information to a space of reduced dimensionality

• Drawback: requires taking all original D measurements

17

Reminder: linear transformations

• Translation in a space

y = x + u

• Linear transformation according to matrix A of size K × D

y = Ax

• Rotation in a space (example in 2D)

A =

[
cos θ − sin θ

sin θ cos θ

]

• General formulation

y = A(x + u)

18

Principal component analysis

• Principal component analysis (PCA)

• Linear projection in a space with K dimensions, with minimal loss of information

• Variance = information

• Consists in extracting vectors in the directions of maximum variances

• Unsupervised: uses only measurements, not class labels

• 1st principal component: direction of maximum variance

• 2nd principal component: direction of maximum variance orthogonal to the first

component

• Linear transformation, centered on the mean vector

z = W>(x− µ)

19

Illustration of PCA

20

12.4 PCA derivation

Lagrange multipliers

• Method for solving optimization problems under constraints

• Example: maximize f (x) under constraints that g(x) = 0

• There is a parameter λ 6= 0 so that

∇f + λ∇g = 0

• Corresponding equation with Lagrange multiplier

L(x,λ) ≡ f (x) + λg(x)

• Maximum obtained by finding ∇L(x,λ) = 0

• If we are only interested in x, we can eliminate λ without having to evaluate it

21

Example with the Lagrange multiplier

• Maximize f (x1,x2) = 1− x21 − x22 subject to constraint g(x1,x2) = x1 + x2 − 1 = 0

• Formulation with Lagrange multiplier

L(x1,x2,λ) = 1− x21 − x22 + λ(x1 + x2 − 1)

• Resolution of ∇L(x1,x2,λ) = 0

∂L

∂x1
= −2x1 + λ = 0

∂L

∂x2
= −2x2 + λ = 0

∂L

∂λ
= x1 + x2 − 1 = 0

• Solution to the system of equations: x1 = 0.5, x2 = 0.5 and λ = 1

22

Example with the Lagrange multiplier

g(x1,x2) = x1 + x2 � 1 = 0
<latexit sha1_base64="X2t/B+QjGGu9AuLryxubnJEeifI=">AAACI3icbZDLSsNAFIYn9VbrLSq4cRMsQkUtSRXsplBw47KCvUAbwmQ6aYfOTMLMRFpiX0ZwpW/iTty48DVcO22zsK0/DHz85xzOmd+PKJHKtr+MzMrq2vpGdjO3tb2zu2fuHzRkGAuE6yikoWj5UGJKOK4roihuRQJD5lPc9Ae3k3rzEQtJQv6gRhF2GexxEhAElbY886hXGHrOxdArnVU0nGu4dCq2Z+btoj2VtQxOCnmQquaZP51uiGKGuUIUStl27Ei5CRSKIIrHuU4scQTRAPZwWyOHDEs3md4/tk6107WCUOjHlTV1/04kkEk5Yr7uZFD15WJtYv5Xa8cqKLsJ4VGsMEezRUFMLRVakzCsLhEYKTrSAJEg+lYL9aGASOnI5rYQFDIG5/6R+Gyc00E5i7EsQ6NUdK6KpfvrfLWcRpYFx+AEFIADbkAV3IEaqAMEnsAzeAVvxovxbnwYn7PWjJHOHII5Gd+/ABWixQ==</latexit>

f(x1,x2) = 1 � x2
1 � x2

2
<latexit sha1_base64="OJS5NjESZwxMCcuMz/cprKH71KE=">AAACJXicbVDLSgMxFM3UV62vUTeCm2ARKmiZGQW7EQpuXFawD2inQybNtKHJzJBkpGWoXyO40j9xJ4Ir/8K16WNhWw8kHM65l3vv8WNGpbKsLyOzsrq2vpHdzG1t7+zumfsHNRklApMqjlgkGj6ShNGQVBVVjDRiQRD3Gan7/duxX38kQtIofFDDmLgcdUMaUIyUljzzKCgMPPt84DlnN/aFpm1H/07b8cy8VbQmgMvEnpE8mKHimT+tToQTTkKFGZKyaVuxclMkFMWMjHKtRJIY4T7qkqamIeJEuunkghE81UoHBpHQL1Rwov7tSBGXcsh9XcmR6slFbyz+5zUTFZTclIZxokiIp4OChEEVwXEcsEMFwYoNNUFYUL0rxD0kEFY6tLkpFEeco7k7Up+PcjooezGWZVJzivZl0bm/ypdLs8iy4BicgAKwwTUogztQAVWAwRN4Bq/gzXgx3o0P43NamjFmPYdgDsb3L4AIo40=</latexit>

23

PCA derivation

• First principal component w1: direction of the main variance

z1 = w>1 x

• Only the direction is important, ‖w1‖ = 1

• If Cov(x) = Σ then Var(z1) = w>1 Σw1

E[w>x] = w>E[x] = w>µ

Var(w>x) = E
[
(w>x−w>µ)2

]

= E
[
(w>x−w>µ)(w>x−w>µ)>

]

= E
[
w>(x− µ)(x− µ)>w

]

= w>E
[
(x− µ)(x− µ)>

]
w

= w>Σw
24

First principal component

• We look for the vector w1 which maximizes Var(z1), with constraint w>1 w1 = 1

• Resolution by Lagrange method

L(w1,α) = w>1 Σw1 − α
(
w>1 w1 − 1

)

∂L(w1,α)

∂w1
= 2Σw1 − 2αw1 = 0

Σw1 = αw1

• By definition, Σw1 = αw1 is true when w1 is an eigenvector of Σ and that α is

the associated eigenvalue

• We choose the eigenvector with the largest eigenvalue, α = λ1, given that:

Var(w>1 x) = w>1 Σw1 = αw>1 w1 = α

25

Second principal component

• Vector w2 maximizes Var(z2)
• Constraint 1: w2 is unitary, w>2 w2 = 1

• Constraint 2: w2 is orthogonal to w1, w>2 w1 = 0

• Resolution by Lagrange method

L(w1,w2,α,β) = w>2 Σw2 − α
(
w>2 w2 − 1

)
− β(w>2 w1 − 0)

∂L(w1,w2,α,β)

∂w2
= 2Σw2 − 2αw2 − βw1 = 0

w>1
∂L(w1,w2,α,β)

∂w2
= 2w>1 Σw2 − 2αw>1 w2 − βw>1 w1 = 0

• Given that Σw1 = λ1w1, then:

w>1 Σw2 = w>2 Σw1 = λ1w
>
2 w1 = 0

2w>1 Σw2 − 2αw>1 w2 − βw>1 w1 = −βw>1 w1 = 0 ⇒ β = 0

• So we simplify 2Σw2 − 2αw2 − βw1 = 0

Σw2 = αw2

26

Second principal component

• Σw2 = αw2 implies that w2 is also an eigenvector of Σ

• Since we want to maximize Var(w>2 x), we choose the eigenvector associated with

the second largest eigenvalue, α = λ2

• We proceed in the same way for the other dimensions, by choosing as wi the

eigenvectors, in decreasing order of associated eigenvalues

• Rotation matrix W = [w1 w2 · · · wK] thus contains the K ≤ D first eigenvectors

(with higher eigenvalues)

• Additional properties

• Since Σ is symmetric, eigenvectors are orthogonal

• Since wi are unitary, they form an orthonormal base

• If Σ is defined as positive (x>Σx > 0, ∀x 6= 0), all eigenvalues are non-zero,

λi 6= 0, ∀λi
• Otherwise, the rank of Σ gives the number of non-zero eigenvalues

27

Eigenvalues/eigenvectors and PCA

p
�2

<latexit sha1_base64="VqrZAX150G/AHZtYw8d2ZNrQ30E=">AAACHXicbVDLSsNAFJ34rPUVdelmsAhdlaQKuiy4cVnBPqAJYTKZtENnJnFmUighfyK40j9xJ27FH3HttM3Cth4YOJxzD/fOCVNGlXacb2tjc2t7Z7eyV90/ODw6tk9OuyrJJCYdnLBE9kOkCKOCdDTVjPRTSRAPGemF47uZ35sQqWgiHvU0JT5HQ0FjipE2UmDbnnqSOveYiUQoaBaBXXMazhxwnbglqYES7cD+8aIEZ5wIjRlSauA6qfZzJDXFjBRVL1MkRXiMhmRgqECcKD+fX17AS6NEME6keULDufo3kSOu1JSHZpIjPVKr3kz8zxtkOr71cyrSTBOBF4vijEGdwFkNMKKSYM2mhiAsqbkV4hGSCGtT1tIWihPO0dI/8pAXVVOUu1rLOuk2G+5Vo/lwXWvVy8oq4BxcgDpwwQ1ogXvQBh2AwQQ8g1fwZr1Y79aH9bkY3bDKzBlYgvX1C1wPoqw=</latexit>

p
�1

<latexit sha1_base64="EW/jKFie8cbHV8jRTEomGGmgVf8=">AAACHXicbVDLSsNAFJ34rPUVdelmsAhdlaQKuiy4cVnBPqAJYTKZtENnMnFmUighfyK40j9xJ27FH3HttM3Cth4YOJxzD/fOCVNGlXacb2tjc2t7Z7eyV90/ODw6tk9Ou0pkEpMOFkzIfogUYTQhHU01I/1UEsRDRnrh+G7m9yZEKiqSRz1Nic/RMKExxUgbKbBtTz1JnXvMRCIUuEVg15yGMwdcJ25JaqBEO7B/vEjgjJNEY4aUGrhOqv0cSU0xI0XVyxRJER6jIRkYmiBOlJ/PLy/gpVEiGAtpXqLhXP2byBFXaspDM8mRHqlVbyb+5w0yHd/6OU3STJMELxbFGYNawFkNMKKSYM2mhiAsqbkV4hGSCGtT1tIWigXnaOkfeciLqinKXa1lnXSbDfeq0Xy4rrXqZWUVcA4uQB244Aa0wD1ogw7AYAKewSt4s16sd+vD+lyMblhl5gwswfr6BVpmoqs=</latexit>

w1<latexit sha1_base64="csSonErN3g4OHVSczLpXXS8GhQU=">AAACF3icbVDLSgMxFM3UV62vqks3wSJ0VWaqoMuCG5cV7AM6Q8mkmTY0jyHJKGWY3xBc6Z+4E7cu/RHXZtpZ2NYDgcM593JPThgzqo3rfjuljc2t7Z3ybmVv/+DwqHp80tUyUZh0sGRS9UOkCaOCdAw1jPRjRRAPGemF09vc7z0SpakUD2YWk4CjsaARxchYyfc5MpMwSp+yoTes1tyGOwdcJ15BaqBAe1j98UcSJ5wIgxnSeuC5sQlSpAzFjGQVP9EkRniKxmRgqUCc6CCdZ87ghVVGMJLKPmHgXP27kSKu9YyHdjLPqFe9XPzPGyQmuglSKuLEEIEXh6KEQSNhXgAcUUWwYTNLEFbUZoV4ghTCxta0dIViyTla+kca8qxii/JWa1kn3WbDu2w0769qrXpRWRmcgXNQBx64Bi1wB9qgAzCIwTN4BW/Oi/PufDifi9GSU+ycgiU4X7+E56C0</latexit>

w2<latexit sha1_base64="Oea9dKwiRQtckEG5FDLgWaZkn9M=">AAACF3icbVDLSgMxFM3UV62vqks3wSJ0VWaqoMuCG5cV7AM6Q8mkmTY0jyHJKGWY3xBc6Z+4E7cu/RHXZtpZ2NYDgcM593JPThgzqo3rfjuljc2t7Z3ybmVv/+DwqHp80tUyUZh0sGRS9UOkCaOCdAw1jPRjRRAPGemF09vc7z0SpakUD2YWk4CjsaARxchYyfc5MpMwSp+yYXNYrbkNdw64TryC1ECB9rD6448kTjgRBjOk9cBzYxOkSBmKGckqfqJJjPAUjcnAUoE40UE6z5zBC6uMYCSVfcLAufp3I0Vc6xkP7WSeUa96ufifN0hMdBOkVMSJIQIvDkUJg0bCvAA4oopgw2aWIKyozQrxBCmEja1p6QrFknO09I805FnFFuWt1rJOus2Gd9lo3l/VWvWisjI4A+egDjxwDVrgDrRBB2AQg2fwCt6cF+fd+XA+F6Mlp9g5BUtwvn4Bho+gtQ==</latexit>

µ
<latexit sha1_base64="Ur/vxXY15cKHXaroZnJzUVHZ+Mc=">AAACE3icbVDLSsNAFL3xWeur6tLNYBG6KkkVdFlw47KCfUATymQ6aYfOTMLMRCghPyG40j9xJ279AH/EtdM2C9t64MLhnHu5954w4Uwb1/12Nja3tnd2S3vl/YPDo+PKyWlHx6kitE1iHqteiDXlTNK2YYbTXqIoFiGn3XByN/O7T1RpFstHM01oIPBIsogRbKzU80OR+SLNB5WqW3fnQOvEK0gVCrQGlR9/GJNUUGkIx1r3PTcxQYaVYYTTvOynmiaYTPCI9i2VWFAdZPN7c3RplSGKYmVLGjRX/05kWGg9FaHtFNiM9ao3E//z+qmJboOMySQ1VJLFoijlyMRo9jwaMkWJ4VNLMFHM3orIGCtMjI1oaQsjsRB46Y8sFHnZBuWtxrJOOo26d1VvPFxXm7UishKcwwXUwIMbaMI9tKANBDg8wyu8OS/Ou/PhfC5aN5xi5gyW4Hz9AoWrnyA=</latexit>

28

ACP as a linear transformation

z = W>(x−m)

29

12.5 Alternative PCA derivation

Alternative derivation

• Alternative PCA derivation
• Search for a transformation z = W>x, where variables of z are uncorrelated

• Consists in looking for W so that Cov(z) = D′ is diagonal

• Suppose C, matrix D ×D, where column ci is i-th eigenvector of S, the estimator
of Σ.
• So CC> = C>C = I

S = SCC>

= S[c1 c2 · · · cD]C>

= [Sc1 Sc2 · · · ScD]C>

= [λ1c1 λ2c2 · · · λDcD]C>

= λ1c1c
>
1 + λ2c2c

>
2 + · · ·+ λDcDc

>
D

= CDC>

• Matrix D is diagonal, with eigenvalues λ1,λ2, . . . ,λD 30

Spectral decomposition

• CDC> is the spectral decomposition of S

• Since C is orthogonal and CC> = C>C = I

S = CDC>

C>SC = C>CDC>C

C>SC = D

• We know that Cov(z) = W>SW and that we want Cov(z) to be diagonal

• We thus set W = C

31

12.6 PCA illustration

Proportion of variance

• Eigenvalue λi indicates the contribution of the component associated to the

variance

• Proportion of the variance explained by the K principal components:

PoV =
λ1 + λ2 + · · ·+ λK

λ1 + λ2 + · · ·+ λK + · · ·+ λD

• High correlation between variables ⇒ few components with high eigenvalues

• Scree plot: plot of decreasing eigenvalue sorting

32

Scree plot

0 100 200 300 400 500 600 700 800
Eigenvectors

0

200

400

600
Ei

ge
nv

al
ue

s
MNIST Scree plot

0 100 200 300 400 500 600 700 800
Eigenvectors

20

40

60

80

100

R
at

io
 (%

)

Proportion of variance explained

33

Example with PCA

10 5 0 5 10 15 20 25 30

PCA1

15

10

5

0

5

10

15

20

25

PC
A 2

2-D PCA space for MNIST

34

Character reconstruction: 7 and 9

M = 1 M = 2 M = 20 M = 200Original

35

Character reconstruction: 1 and 7

M = 1 M = 2 M = 20 M = 200Original

36

PCA characteristics

• PCA explains the variance of datasets

• However sensitive to outliers, which greatly influence the variance

• Very interesting to visualize data

• For high dimensionality (D large), calculations on S can be heavy (O(D2))

• There are methods to reduce calculations to an order of O(KD)

• Loss of significance of variables

• Construction of artificial variables corresponding to a linear combination of the

original variables

37

Reconstruction error

• Data reconstruction

• Projection in space of z

zt = W>(xt − µ)

• Since W is orthogonal, WW> = I

Wzt = WW>(xt − µ)

x̂t = Wzt + µ

• PCA minimizes reconstruction error

errrecon =
∑

t

‖x̂t − xt‖2

• Reconstruction error depends directly on the number of components K used

38

Eigendigits

Eigenvector1 Eigenvector2 Eigenvector3 Eigenvector4

Eigenvector300 Eigenvector400 Eigenvector500 Eigenvector600

39

12.7 Whitening transformation

Whitening transformation

• Whitening transformation: center the mean of the data on the origin, remove all

covariances and make the variance unitary.

x ∼ ND(µ,Σ)
whiten7→ z ∼ ND(0,I)

• Linear transformation

z = Σ−0.5(x− µ)

• Strong link with Mahalanobis distance

DM(x) = (x− µ)>Σ−1(x− µ)

• Mahalanobis distance corresponds to Euclidean distance squared in whitened space

• How to calculate Σ−0.5?
40

Spectral decomposition

• CDC> is the spectral decomposition of Σ

• Since C is orthogonal and CC> = C>C = I

Σ = CDC>

C>ΣC = C>CDC>C

C>ΣC = D

• We know that Cov(z) = W>ΣW and that we want Cov(z) to be diagonal

• We thus set W = C

41

Decomposition of the covariance matrix

• Decomposition of the covariance matrix

Σ = WDW>

• Eigenvectors of the covariance matrix

W = [w1 w2 · · · wD]

• Eigenvalues of the covariance matrix

D =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λD




42

Square root of the covariance matrix

• W is orthogonal, so W−1 = W>

• Development of Σ0.5

Σ = WDW> = WD0.5D0.5W>

= (WD0.5W>)(WD0.5W>) = Σ0.5Σ0.5

Σ−0.5 = (WD0.5W>)−1 = WD−0.5W>

• Matrix D is diagonal, so

D−0.5 =




λ−0.51 0 · · · 0

0 λ−0.52 · · · 0
...

...
. . .

...

0 0 · · · λ−0.5D




43

Summary

x ∼ ND(µ,Σ)

z = Σ−0.5(x− µ)

= WD−0.5W>(x− µ)

where W = [w1 w2 · · · wD]

and D−0.5 =




λ−0.51 0 · · · 0

0 λ−0.52 · · · 0
...

...
. . .

...

0 0 · · · λ−0.5D




z ∼ ND(0,I)

44

Illustration of a whitening transformation

45

Illustration of a whitening transformation

2 0 2
x1

2

0

2

x2

Original data

2 0 2

z*
1

2

0

2

z*
2

Whitened data

46

12.8 Manifold learning

Manifold learning

• Manifold hypothesis: data are based on nonlinear space embedded in a higher
dimensional space
• Manifold learning aims at extracting this space

• Non-linear methods of dimensionality reduction

• Example of the Swiss roll

By Olivier Grisel, CC-BY 3.0, https://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png.

47

https://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png

Multidimensional scaling

• Multidimensional scaling, MDS

• Find projection to a space of lower dimensionality preserving as much as possible the

values of distance ‖xi ,xj‖ between all the data pairs of the set X = {xt}Nt=1

• Sammon’s method: determine nonlinear projection g(x|θ) that minimizes

E (θ|X) =
∑

t=1,...,N

∑

s=1,...,N
s 6=t

(‖g(xt |θ)− g(xs |θ)‖ − ‖xt − xs‖)2
‖xt − xs‖2

• θ∗ = argminθ E (θ|X)

• g(x|θ) can be a polynomial regression, kernel regression, neural network, etc.

• Measure of arbitrary distance ‖ · ‖, does not have to be Euclidean distance

48

Multidimensional scaling

• Position 128 North American cities based on road distances between them only

2000 1000 0 1000

z1 (km)

2000

1000

0

1000

2000

z 2
 (

km
)

Canada
USA

49

t-SNE (t-distributed Stochastic Neighbour Embedding) 1/2

• Determine projection of each data in low dimensionality by preserving the
neighbourhood of the original space

• In practice, useful to visualize data in a 2D or 3D space

• Determine probability to be neighbours between the pairs of the set X = {xt}Nt=1

in the original space

• Probability pj|i of selecting xj as neighbour of xi

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖2/2σ2

i)

• Probability pi,j =
pi|j+pj|i

2N that xj is selected as neighbour of xi according to a normal

law centered on xi (pi,i = 0)

• σ2
i is adjusted locally for each data (bisection method)

50

t-SNE (t-distributed Stochastic Neighbour Embedding) 2/2

• Determining the probability of being neighbour between pairs of instances in low
dimensional space
• zt is the projection of xt in low dimensional space

• Probability qi,j assuming a Student’s Law

qi,j =
(1− ‖zi − zj‖2)−1∑

k=1,...,N
k 6=i

(1− ‖zi − zk‖2)−1

• Learn projections z = g(x|θ) of the points in low dimensionality in order to

minimize the divergence between these probabilities.

E (θ|X) = KL(P‖Q) =
∑

t=1,...,N

∑

k=1,...,N
k 6=t

pt,k log
pt,k
qt,k |θ

θ∗ = argmin
θ

E (θ|X)

51

Manifold learning comparison

Source: https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html, accessed November 26, 2018, code licensed under

BSD 3.
52

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html

12.9 Preprocessing and data

analysis with scikit-learn

Scikit-learn: scaling, standardization and imputation

• Scaling and standardization

• preprocessing.MinMaxScaler: adjust the scale according to minimum/maximum

values

• preprocessing.scale: standardization so that variables follow a normal

centered-reduced law

• Imputation

• impute.SimpleImputer: imputing values to a fixed value for each variable

• strategy: strategy used for simple imputation, either a mean value (mean), a median

value (median), a more frequent value (most_frequent), or a constant (constant)

• impute.MissingIndicator: get a mask indicating missing variables of a dataset

53

Scikit-learn: feature selection

• Univariate selection
• feature_selection.VarianceThreshold: select feature with variance greater

than a given threshold

• feature_selection.SelectKBest (SelectPercentile): retains the best K (top

percentile) features according to a given performance measure

• chi2: χ2 test between features

• f_classif: ANOVA test between features

• mutual_info_classif: mutual information criterion

• feature_selection.RFE: backward selection according to model coefficients
• estimator (object): learning model used for selection

• n_features_to_select (int): total number of features to be selected

• step (int or float)

• If ≥1, number of features removed at each iteration

• If [0,1), ratio of the number of features removed at each iteration

• feature_selection.SelectFromModel: selection from a model (e.g. according

to coefficients) 54

Scikit-learn: principal component analysis

• decomposition.PCA: principal component analysis

• Parameters

• n_components (int): number of components to keep, by default K = min(N,D)

• whiten (bool): normalizes by eigenvectors, thus performing a whitening

transformation

• Attributes

• components_ (array): vectors of the principal components (size K × D)

• explained_variance_ (array): variance explained by each component (vector of size

K)

• explained_variance_ratio_ (array): proportion of the variance explained by each

component (vector of size K)

55

Scikit-learn: manifold learning

• manifold.MDS: multidimensional scaling

• n_components (int): dimensionality of the destination space

• metric (bool): metric or not

• dissimilarity: measure of distance, i.e. euclidean (default) or precomputed

• manifold.TSNE: t-SNE

• n_components (int): dimensionality of the destination space

• perplexity (float): linked to the number of neighbours used (default: 30)

• Other non-linear manifold learning algorithms

• manifold.Isomap: Isomap algorithm

• manifold.LocallyLinearEmbedding: LLE algorithm

• manifold.SpectralEmbedding: Laplacian eigenmaps algorithm

56

	12.1 Data preprocessing
	12.2 Feature selection
	12.3 Principal component analysis
	12.4 PCA derivation
	12.5 Alternative PCA derivation
	12.6 PCA illustration
	12.7 Whitening transformation
	12.8 Manifold learning
	12.9 Preprocessing and data analysis with scikit-learn

