
PyTorch

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 10

10.8 PyTorch basics

PyTorch

• Automatic differentiation library for deep learning

• Early October 2016 by a Facebook team

• Built over the Torch C engine

• More pythonic than TensorFlow

• Very close to numpy syntax

• Supports GPU computing (extremely fast, factor 10!)

• Supports dynamic graphs

• Stable and usable for large scale deployment

1

Tensor concept

• Pytorch is organized around tensor manipulation operations, including automatic
derivation

• Create a tensor from a list with torch.<type>Tensor()

import torch

a = torch.FloatTensor([[1,2,3], [2,3,4]])

• Creating a random tensor

a = torch.randn(2, 3)

print(a)

>> tensor([[0.0991, -0.8607, 0.8124],

[2.1726, 0.7590, -0.2185]])

• Creating a tensor from a Numpy array

a = torch.from_numpy(numpy_array)

2

Tensor concept

• We can perform all kinds of operations on the tensors

a = torch.FloatTensor([[1,2,3], [2,3,4]])

b = torch.FloatTensor([[4,3,3], [5,3,4]])

c = a + b

print(c)

>> tensor([[5., 5., 6.],

[7., 6., 8.]])

• Full list here: https://pytorch.org/docs/stable/torch.html

3

https://pytorch.org/docs/stable/torch.html

Automatic derivation

• During the application of the operations, PyTorch builds a graph of calculation

• This graph allows to follow all the operations necessary to calculate the result

• Then, easy to automatically calculate the derivative at each step of the graph

• To indicate the calculation of the derivative with respect to a certain tensor, use

parameter requires_grad

a = torch.FloatTensor([[1,2,3], [2,3,4]], requires_grad=True)

• Or once the tensor is in place

a.requires_grad = True

4

Example of a linear regression (1/2)

• Declare weight vector and random bias

10 dimensions

W = torch.randn(10, requires_grad=True)

b = torch.randn(1, requires_grad=True)

• Execute the chain of operation (very close to numpy)

y_hat is the predicted output, x is the input

y_hat = W.dot(x) + b

• Calculate the quadratic error

y is the desired output

err = 0.5 * (y_hat - y) ** 2

5

Example of a linear regression (2/2)

• Derive the equation using the method backward()

err.backward()

• We can then recover derivatives in the tensors W and b.

W_grad = W.grad

b_grad = b.grad

• Take a step in the right direction to do a gradient descent

W = W - eta * W.grad

b = b - eta * b.grad

6

Running on GPU

• All tensor operations can be easily performed on a GPU

• PyTorch defines tensors torch.cuda.<type>Tensor in the same way as those

previously seen

• To translate a tensor from a non-GPU type (non-cuda) to a GPU type (cuda) and

vice versa, simply use the method to:

a = a.to('cuda') # to the GPU

a = a.to('cpu') # back to the CPU

7

10.9 Defining a network

Defining a network

• PyTorch offers a way to easily declare networks
• Defining a network with tensors directly would be a difficult task

• Typically we use the package torch.nn and we inherit from nn.Module

import torch.nn as nn

class MonReseau(nn.Module):

def __init__(self):

super().__init__()

the network structure is defined here

- layers

- non-linear operations

- regularization methods

def forward(self, x):

we make the inference here

8

Defining a network

• Several types of layers are available
• Composition of simple modules to create more complex modules

• Examples of basic modules
• Linear

torch.nn.Linear(in_features, out_features, bias=True)

• Convolution 2D

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,

padding=0, dilation=1, groups=1, bias=True)

• Dropout

torch.nn.Dropout(p=0.5, inplace=False)

• See https://pytorch.org/docs/stable/nn.html for more details

9

https://pytorch.org/docs/stable/nn.html

Defining a network

• Most of the layers are also available in functions from torch.nn.functional

• Warning: the module does not register these layers when they are declared directly

as a function

• Parameters of these layers are not taken into account in the list of parameters

• Some layers like dropout or batchnorm have different behaviors in training and

testing, changing network mode changes the behavior of a class layer, but not of a

function layer

• It is therefore better to use function layers only when the layer has no parameters

to be optimized and/or the same behaviour between training and test (e.g.

activation function)

10

Defining a network

Let’s assume the LeNet-5 network

From Y. LeCun, L. Bottou, Y. Bengio et P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11),

1998. Accessed online on November 6, 2020 at http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.

11

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Defining a network

• PyTorch implementation of the LeNet-5 network for a dataset with image on a

channel (2D tensor)

import torch.nn as nn

import torch.nn.functional as F

class Lenet5(nn.Module):

def __init__(self):

super().__init__()

self.C1 = nn.Conv2d(1, 6, kernel_size=5)

self.S2 = nn.MaxPool2d(2)

self.C3 = nn.Conv2d(6, 16, kernel_size=5)

self.S4 = nn.MaxPool2d(2)

self.C5 = nn.Linear(16*4*4, 120)

self.F6 = nn.Linear(120, 64)

self.output = nn.Linear(64, 10)

[...]
12

Defining a network

[...]

def forward(self, x):

y = self.S2(F.relu(self.C1(x)))

y = self.S4(F.relu(self.C3(y)))

y = y.view(-1, 16*4*4) # resizing

y = F.relu(self.C5(y))

y = F.relu(self.F6(y))

return self.output(y)

13

Defining a network

• In the same way, it is very easy to send a network to the GPU with the to

method:

model = Lenet5()

model.to('cuda') # to the GPU

model.to('cpu') # back to the CPU

• It is also possible to change the network mode, which will change the behaviour of

some layers, like this:

model = Lenet5()

model.train() # in training mode

model.eval() # in test mode

14

10.10 Handling datasets

Load and manipulate data

• Class to manage datasets:

torch.utils.data.Dataset

• Must define a method __getitem__(self, index) to access an instance

• Must define a method __len__(self) to return the size of the dataset

• Class to load batches of data:

torch.utils.data.DataLoader

• Must receive a Dataset object and a batch_size, other arguments allow advanced

options

• DataLoader is a python iterator

15

Load and manipulate images

• Subpackage torchvision implements several useful functions for digital vision
and image processing

• torchvision.datasets allows to download several popular datasets such as

MNIST, CIFAR or SVHN

• ImageFolder and DatasetFolder allow to easily load a dataset organized in

directories

• torchvision.transforms implements transformations on images

• ToTensor converts to a PyTorch tensor

• Normalize allows to normalize a PyTorch tensor

• Several other functions available, see

https://pytorch.org/vision/stable/datasets.html

16

https://pytorch.org/vision/stable/datasets.html

Example with MNIST

from torch.utils.data import DataLoader

from torchvision.datasets import MNIST

from torchvision.transforms import ToTensor

batch_size = 64

download to 'path/to/data'
train_set = MNIST('path/to/data', train=True, transform=ToTensor(), download=True)

train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)

17

10.11 Training a network

Training a network

• Once the data has been loaded, an optimizer and error function is needed to do
the training

• Optimizers in torch.optim

• Error functions in torch.nn, such as layers

• For example, to perform multi-class classification, we could use

• Optimizer by stochastic gradient descent torch.optim.SGD

• Cross-entropy torch.nn.CrossEntropyLoss

18

Training a network

• LeNet-5 training in classification

nb_epoch = 10

batch_size = 64

learning_rate = 0.01

momentum = 0.9

download to 'path/to/data'
train_set = MNIST('path/to/data', train=True, transform=ToTensor(),

download=True)

train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)

model = Lenet5()

model.train() # put in training mode

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate,

momentum=momentum)

criterion = torch.nn.CrossEntropyLoss()

[...] 19

Training a network

[...]

for i_epoch in range(nb_epoch):

for i_batch, batch in enumerate(train_loader):

X, y = batch

optimizer.zero_grad() # important! reset the gradients to 0

y_hat = model(X) # compute the predictions

loss = criterion(y_hat, y) # compute the error

loss.backward() # derive the graph

optimizer.step() # perform an optimization step

20

Use a pre-trained network

• Possible to backup a network via its state dictionary (state_dict) and function

torch.save

state = model.state_dict()

torch.save(state, 'path/to/model')

• In the same way, it is possible to load a pre-trained model with the function

torch.load and the method load_state_dict

state = torch.load('path/to/model')
model.load_state_dict(state)

• It’s wise to load a network with a destination indication to first make sure it is on

the CPU

state = torch.load('path/to/model', map_location=lambda storage, loc: storage)

• More details: https://bit.ly/2Pu0Ibm 21

https://bit.ly/2Pu0Ibm

Use a pre-trained network

• Subpackage torchvision.models implements several models useful for vision

tasks.

• Can be loaded with pre-trained weights on the huge ImageNet natural image

dataset

• For example, it is possible to load a ResNet-18 with the pre-trained weights as

follows:

from torchvision.models import resnet18

model = resnet18(pretrained=True)

22

Use a pre-trained network

• Access to network parameters with their layer name with the method
named_parameters()

• Thus, it is possible to analyze the network

for name, param in model.named_parameters():

print(name)

print(param.grad)

• To modify a network

model.nom_de_couche = NouvelleCouche()

• And to freeze layers:

for name, param in model.named_parameters():

if name == nom_de_couche_a_geler:

param.requires_grad = False

23

Use a pre-trained network

• If you freeze layers, then it is important to only give the parameters to be

optimized to the optimizer

params = filter(lambda x: x.requires_grad, model.parameters())

optimizer = torch.optim.SGD(params, lr=learning_rate, momentum=momentum)

24

	10.8 PyTorch basics
	10.9 Defining a network
	10.10 Handling datasets
	10.11 Training a network

