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10.1 Convolution and image
processing



Convolution

e Convolution: product of two functions on the same domain

F(x) * g(x) = /:O_ F(x — t) g(t)dt

e Discrete formulation

fx)+g(x)= Y flx—1t)glt)

t=—00



Convolution example
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Convolution and density estimation

o Off-center Dirac distribution

if x =t =
Sx—t) =47 "FTF / §(x — t)dx = 1.

0 otherwise =—00

e Convolution on off-center Diracs

f(x)*d(x —u)=Ff(x—u)

o Kernel density estimation: kernel convolution with several Diracs centrered on the

data
N

1hZN:K<X_X> I\}h;K( ) 8(x = x%)

t=1




Image processing

e 2D convolution is a building block for image processing
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Source: https://thigiacmaytinh.com/wp-content/uploads/2018/05/kernel.png, accessed November 13, 2018.
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Examples of filters

Identity (3 x 3): Gaussian blur:
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Edge detection: Sharpen:
-1 -1 -1 0 -1 0
-1 8 -1 -1 5 -1
-1 -1 -1 0 -1 0

By Michael Plotke, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Vd-0Orig.png,
https://commons.wikimedia.org/wiki/File:Vd-Blurl.png,
https://commons.wikimedia.org/wiki/File:Vd-Edge3.png, https://commons.wikimedia.org/wiki/File:Vd-Sharp.png.
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Sobel operator

e Classic filter for edge detection
e Compute local gradients of image intensity

e Uses two convolutions to obtain the vertical gradient G, and the horizontal gradient
G, of an image A, the result is an image G = /G2 + G2

+1 0 -1 +1 +2 +1
Gi=| +2 0 -2 | xA, G, = 0 0 0 |=x*A
+1 0 -1 -1 -2 -1

Application of Sobel:

5 g -
By Simpsons contributor, CC-BY-SA 3.0, https:
//commons .wikimedia.org/wiki/File:Valve_original_(1).PNG
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10.2 Convolutional neural networks



Convolutional neural networks

e |dea: neural networks with convolution operations
e Learning the numerical values of convoluted filters
e Define a network exploiting elements of the data structure
e Sound or speech: temporal data (1D convolutions)
e Image: spatial data (2D convolutions)
e Video: spatiotemporal data (3D convolutions)
e Sequence of convolution stages, filtering output of the previous layer
e Allows for more compact modelling than fully connected networks and translation
invariant
e Some components of a convolution network
e Layer of convoluted filters on the different channels
Pooling: maximum (max pool) or average (avg pool) value in a certain convoluted

window
Transfer functions: RelLU, etc.
Near output, fully connected layers (like with multi-layer perceptron)



Convolution network
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From Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, Nature, vol. 521, 28 mai 2015. Accessed online November 6, 2020 at
https://www.nature.com/articles/nature14539.
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Filters composition

Low-Level| |Mid-Level| |High-Level Trainable
—> — —|
Feature Feature Feature Classifier

From G. Hinton, Y. Bengio and Y. LeCun, Deep Learning NIPS'15 Tutorial, 2015. Accessed online on November 6, 2020 at
https://nips.cc/Conferences/2015/Schedule?showEvent=4891.
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10.3 Examples of convolutional
networks



LeNeth

e LeNeth: classical convolutional network, proposed in the 1990s

e 3 convolution layers, 2 average pooling layers, 2 fully connected layers
e 60k parameters (from 10M to 100M with modern networks)

o1 feat C3:f. maps 16@10x10

: feature maps S4: f. maps 16@5x5
INPUT

3932 6@28x28

S2: f. maps
6@14x14

FuIIconr%ecﬂon ’ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

From Y. LeCun, L. Bottou, Y. Bengio et P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE,
86(11), 1998. Accessed online on November 6, 2020, at http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.
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AlexNet

o AlexNet: network for object recognition
e Winner of the ImageNet 2012 contest
e Implemented for GPU Computing

Often used as a basic model for representation transfer
e 3 convolution layers, some max pooling layers, 3 fully connected layers

iy

204 2048 \dense

dense dense|

1000

192 128 Max
Max Max pooling
of 4 pooling pooling

204 2048

From A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks. NIPS, 2012. Accessed
online November 6, 2020, at https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper . pdf.
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VGG

o VGGNet: greater depth with simplified topology
e Winner of the ImageNet 2013 contest
e Depth is critical for good performance
e Similar to AlexNet, but with only 3 x 3 convolutions, 2 x 2 max pooling, 3 layers
fully connected and 16 layers in total (VGG-16)

224x224Xx3 224x224x64

£ convolution+ReLU
) max pooling
fully connected+ReL.U

softmax

Source: https://heuritech.files.wordpress.com/2016/02/vggl6.png, accessed November 13, 2018. 12
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e Residual networks: allowing direct connections between non-adjacent layers (skip

links)

weight layer

X
identity

From K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020,
at https://arxiv.org/abs/1512.03385.

e Allows for much deeper and more efficient networks
e Winner of ImageNet 2015 competition (3.57 % top 5 error)
e Facilitates signal optimization and propagation across the network
e Residual block must do better than a treatment directly on the previous block

13
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From K. He, X. Zhang, S. Ren, et J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020, at
https://arxiv.org/abs/1512.03385.
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DenseNet

e Observation: convolution networks can be deeper and get better performance with
close connections throughout the network at its input.
e DenseNet: connect each layer to all of the above layers
e Network with L layers will have L(L + 1)/2 direct connections between layers

From G. Huang, Z. Liu, L. Van Der Maaten et K.Q. Weinberger, Densely Connected Convolutional Networks. CVPR, 2017. Accessed online
on November 6, 2020, at https://arxiv.org/abs/1608.06993.
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DenseNet

e In practice, we create dense blocks separated by convolution and pooling layers

Input
Prediction
9 Dense Block 1 9 Dense Block 2 9 Dense Block 3
S El 3 3 p & [
s Stele Stmle Stel? “horse”
= gl |5 S 5 8
S @7. S i @. S i @. P )
S S S

. Liu, L. Van Der Maaten et K.Q. Weinberger, Densely Connected Convolutional Networks. CVPR, 2017. Accessed online

From G. Huang, Z
on November 6, 2020, at https://arxiv.org/abs/1608.06993.

e Each layer in a dense block can be relatively narrow, i.e. can contain few neurons.
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EfficientNet

o EfficientNet: optimal adjustment of convolution network size

e How to adjust network architecture according to available resources?

e |dea: if the image resolution is higher, performance will be better, but the
resources required (depth and width) are greater to properly capture image details.
e Proportional adjustment of depth, width and resolution according to ¢ factor

e Depth: number of network layers, according to a®
e Width: number of channels in each layer, according to 3¢
e Resolution: input image resolution adjustment, according to v

Values of «, 8 and y determined experimentally (grid search) for a network with
doubled resources (a - % - 7% ~ 2)

o MobileNet V2-based architecture, with reverse bottleneck of residual connections

17



Size adjustment in EfficientNet

#channels
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(a) baseline b) width scaling (c) depth scaling (d) resolutlon scaling (e) compound scaling

Taken from M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML, 2019. Accessed online on October
29, 2023 at https://arxiv.org/abs/1905.11946.
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EfficientNet performances
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Taken from M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. ICML, 2019. Accessed online on
October 29, 2023, at https://arxiv.org/abs/1905.11946.
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o Networks presented so far first proposed and tested for object recognition
(classification)

e Other possible tasks in vision: detection, tracking, etc.
e Segmentation: identify coherent regions of the image

e Separate the different regions
e Give a label to each region

e U-Net: network proposed for biomedical imaging

e Fully convolutional network, gives an output image
e Compression of information in a network environment, similar to an auto-encoder
e Skip links allow to preserve spatial structure

20
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From O. Ronneberger, P. Fischer, et T. Brox, U-net: Convolutional networks for biomedical image segmentation. MICCAI, 2015. Accessed online on
November 6, 2020 at https://arxiv.org/abs/1505.04597.
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10.4 Images generation




Generation of examples

e |dea: generate input data based on a desired output

e Generate a model of the data that can produce the output according to the neural
network

e Approach: gradient descent on the input data

OE(x|0
Ax = —néx‘ )

e We will generate a new data from the initial value of x and the desired output r.
e Network weights do not change

22



Deep dream

Towers & Pagodas Buildings Birds/& Insects

By Google, CC-BY 4.0, https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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Style transfer

e |dea: transfer the style of an image into a new image
e Compare the content in the convolution layers (e.g. VGG19) and the style (Gram
matrix)

Content loss
IC(x) - Cp)|

Conv layers

Content (p) Conv layers

e

| Styleloss
Conv layers IS() - S(a)|

Green Sea Turtle grazing seagrass, CC-BY-SA-3.0, https://commons.wikimedia.org/wiki/File:Green_Sea_Turtle_grazing_seagrass.jpg

Style (a)

The Great Wave off Kanagawa, public domain, https://commons.wikimedia.org/wiki/File: Tsunami_by_hokusai_19th_centuryjpg
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Generative Adversarial Networks (GAN)

e GAN model: putting in competition two neural networks
e Discriminative network: distinguishing true data from the problem from generated
data
e Generative network: producing data that looks authentic
e Allows various treatments based on unsupervised learning

e Example: image-to-image translation with conditional GANs

Labels to Street Scene Labels to Facade BW to Color

ut
Day to Night Edges to Photo

will &
_a )

output input output input output

From Isola, Zhu, Zhou and Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017. Accessed online on
October 19, 2020, at https://arxiv.org/pdf/1611.07004v3.pdf. 25
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Generative Adversarial Networks (GAN)

Dataset Real data
\ Discriminative e ———
network Real or fake data?
Generative Generated data OLy4 - Ld
network 904
0a
0L4

_8709
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Features of GAN

e Key method in the development of generative models
e Most historical generative models capable of realistic results are based on GANs
e E.g., This person does not exist based on StyleGAN

e Self-supervised training, without requiring labelled data or explicit quality metrics
e Triggering advances in the use of self-supervised approaches to train deep networks
e No guarantee of the realism and quality of the data produced

e Model complex to train
e Balance in training generative and discriminative models difficult to maintain,
discriminative task easier than generative task
e Loss of coverage in generation through mode collapse
e Training can be quite computationally intensive
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10.5 Sequence processing




Recurrent network

e Usual networks (feedforward): data propagated in the network, independent of the
following / previous data

e Sequential data processing important in many contexts
e Recurrent networks: connections with previous values

e Processing With usual algorithms by unrolling the network

Unfold

By fdeloche, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Long Short-Term Memory (LSTM)

e LSTM model: adding memory to

the network

e Memory cell (state), with four
neurons

o hy

e Input
e Input activation

e Forgetfulness activation

Output activation
By Graves, Mohamed and Hinton, CC-SA 4.0, https:

//en.wikipedia.org/wiki/File:Peephole_Long_Short-Term_Memory.svg
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LSTM variants

e Bidirectional LSTM (BiLSTM): process sequence in the two directions
e Additional cells to process data in reverse direction
e Allows better use of sequence content
e Particularly useful for natural language processing

e GRU (Gated Recurrent Unit): simplification of the LSTM model

e Simplification of the LSTM cell model by combining input activation and forgetting.
e Compromises between complexity and performance
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LSTM strengths and weaknesses

e Strengths of LSTMs

e Able to capture distant relationships in sequences

e Has demonstrated great versatility in its application to sequence processing (e.g.
automated translation, speech recognition)

e Offers better control over vanishing gradient, which is an issue with classical
recurrent networks

o Weaknesses of LSTMs

e Complex models, with a high number of parameters, requiring long training times
and large datasets
e Tends to overfit, especially on small datasets

31



10.6 Transformer networks




Transformer networks

e Transformer networks
e Uses an attention mechanism to establish relationships between elements in a
sequence (e.g. words in a sentence)
e Designed to enable parallel processing with multiple heads, allows efficient use of
GPUs
e Include an encoder component and a decoder component
e Does not use recurrence, attention mechanism gives ability to use whole context
(long-term memory)
e Central models for large language models (GPT, BERT)

e Also used with images (vision transformers (ViT)), speech recognition, etc.

32



ansformer networks functioning
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Input Output

Output
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Par Yuening Jia, CC BY-SA 3.0 DEED,
https://commons.wikimedia.org/wiki/File:
The-Transformer-model-architecture.png.
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Transformer networks functioning
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Attention mechanism

e Compute the attention between the query Q, the key K and the value V
according to:

Attention(Q,K,V) = softma: <QKT> \Y
i ,K,V) = softmax
Vi

e The values of Q, K and V result from the application of weights Wy, W, and W,
on the data X
e Division by /dj to stabilize the gradient (dy: key size K)

e Each head works in parallel with its own weights W,, W, and W, .
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Attention mechanism
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Attention mechanism
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Example: application to translation

a) Word Transformer Transformer Transformer
embeddings block block block
The —» - > -
soup > - - -
tasted —» = - o —n
like —> - - -
socks > s - -
Transformer with masked self-attention + Probabilities
b) Word encoder-decoder attention Linear + over target
embeddings Softmax (next) token
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Source: https://www.borealisai.com/wp-content/uploads/2021/06/T14_10.png, accessed on November 1, 2023. 37
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Large Language Models

e BERT (Bidirectional Encoder Representations from Transformers)

e Proposed in 2018 by a team of Google researchers

e Consisting of a lexical embedding module, several layers of self-attentive encoders,
and conversion to probabilistic output

e Rapidly becoming a central model in natural language processing

e Since 2020, virtually all English search queries on Google are processed with BERT

e GPT (Generative Pre-trained Transformer)

e OpenAl’s family of transformer-based models, proposed in 2018 (GPT-1)

e GPT-3: GPT-1 4+ modified normalization (GPT-2) + scaling, proposed 2020, 175G
parameters trained on 500G tokens

e GPT-4: undisclosed architecture, but estimated at 1.7T (1700G) parameters

e ChatGPT: integration of GPT-3.5 / GPT-4 and reinforcement learning with human
feedback (RLHF)
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Vision transformers (ViT)

e Vision transformers (ViT): adapting the transformer architecture to computer
vision
e Instead of processing word sequences, processes fixed size, non-overlapping image
patches
e Each patch is represented by a 1D vector, with positional information added to the
representation
e Patch representation provided as a sequence to the transformer network

e ViT characteristics

e Able to capture complex and distant relationships in images, without requiring
convolution layers

e Can achieve state-of-the-art performance with sufficient data and resources

e Requires very large datasets and intensive training to perform well
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Vision transformers (ViT)

Vision Transformer (ViT) Transformer Encoder
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Transformer Encoder
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Embedded
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Taken from Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR, 2020. Accessed on-line on
November 2, 2023, at https://arxiv.org/pdf/2010.11929.pdf. 40
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Diffusion models

e Diffusion models: class of generative models simulating a random diffusion
process transforming a data instance into a noise instance
e Inspired by physics, with diffusion of particles from a medium of high concentration
to a low concentration one
e Used for image generation, denoising or inpainting
e Diffusion processes
e Forward diffusion: start with a clear image to which light noise is successively added
until the image is nothing but noise
e Reverse diffusion: start the process with an image of pure noise, on which successive
denoising operations are applied to obtain a clear image
e Each forward or reverse diffusion step guided by a transition function, typically
Gaussian, conditioned on the current state
e Once the reverse diffusion (denoising) mechanics have been learned, they can be
used to generate new images
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Forward diffusion process

Forward diffusion process (fixed)

Data Noise

Xo X3 X, X3 X4 Xp
~— Y~ Y~ Y~ Y~ N~

L N L N L N

T
q(xixi1) = N(xe; V1 — Bixe_1, D) = q(xrr(X0) = Hq(xt|xr—1) (joint)
=1

Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,
https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.
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Reverse diffusion process

Reverse denoising process (generative)

Data Noise

p(xr) = N(x7;0,1)
po(xt—1]xz) = N (x¢—1: pg(x, ), o7T) i1

= py(xor) = p(xp) [ [ po(xi—1/x¢)

N J

~
Trainable network
(U-net, Denoising Autoencoder) 1
Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,
https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.
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Training diffusion models

e Forward diffusion: typically consists of applying Gaussian noise to pixels

e Repeated application of a small amount of Gaussian noise transforms the set of
pixels into random values having a Gaussian distribution
e Level of noise applied can vary in the sequence according to a schedule

e Reverse diffusion: neural network to remove noise

e Use forward diffusion data to train the denoising network
e Denoising network receives current noise level
e U-Net commonly used as denoising network

e Reverse diffusion process can be conditioned

e Specific class targeted
e Text query, using vector representation (lexical embedding or transformer network)
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Strengths and weaknesses of diffusion models

e Strengths of diffusion models

e Capable of generating high-quality data
e Flexible and can be adapted to different data types, works with complex data
distributions

o Weaknesses of diffusion models

e Generation process can be computationally heavy, with the many iterations required
in reverse diffusion.
e Training is computationally heavy

e These models form the basis of generative image models such as DALL-E
(OpenAl), Midjourney or Stable Diffusion.
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