Deep Networks Architectures

Introduction to Machine Learning — GIF-7015
Professor: Christian Gagné

Week 10

UNIVERSITE

LAVAL

10.1 Convolution and image
processing

Convolution

e Convolution: product of two functions on the same domain

F(x) * g(x) = /:O_ F(x — t) g(t)dt

e Discrete formulation

fx)+g(x)= Y flx—1t)glt)

t=—00

Convolution example

-E -1 1 4

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution example

£
L)
0.6
0.4
0.z

-z -1 1 Z
L)
-E -1 1 4

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution example

-E -1 1 4

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution example

-]
L)
0.4
0.z

-E -1 1 £

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution example

-]
L)
0.4
0.z

-E -1 1 £

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution example

-]
L)
0.4
0.z

-E -1 1 £

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.

https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif

Convolution and density estimation

o Off-center Dirac distribution

if x =t =
Sx—t) =47 "FTF / §(x — t)dx = 1.

0 otherwise =—00

e Convolution on off-center Diracs

f(x)*d(x —u)=Ff(x—u)

o Kernel density estimation: kernel convolution with several Diracs centrered on the

data
N

1hZN:K<X_X> I\}h;K() 8(x = x%)

t=1

Image processing

e 2D convolution is a building block for image processing

~T7]
/{ 0] 4
S ixel o 0
ource pixel % // 5 Y
—1 1 | A 0L
[ah 7 4 ,S/T 41— (1X3)+(0X0)+(1x1)+
—Te 216 | 12 (2x2)+(0x6)+(2x2)+
—=To|+"o
| Al o Te | (1x2)+(0%4) +(1x1) =-3
i o0 P2 K2 /
o LT T]
512 =T o |
2 | 2115 A L—T
6 |~ 0 6 | — 3 [S // | A
2 L 1 // 0| A 1 > | |
AT AT | Y T 1A
2Tz | 21 > <P 1
6 [— 6] — 3 |
2| C+-To > -2 LT 1A
4 }/ 7’ 1 1A |
2]~ 1 |
Convolution filter ///// |
{Sobel Gx) 1T AT LT
Destinationpiel [L7 L~ | 1+
L —1 | // |
// |1 | —
// //
//

Source: https://thigiacmaytinh.com/wp-content/uploads/2018/05/kernel.png, accessed November 13, 2018.

https://thigiacmaytinh.com/wp-content/uploads/2018/05/kernel.png

Examples of filters

Identity (3 x 3): Gaussian blur:

o O o
o = O
o O o

Edge detection: Sharpen:
-1 -1 -1 0 -1 0
-1 8 -1 -1 5 -1
-1 -1 -1 0 -1 0

By Michael Plotke, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Vd-0Orig.png,
https://commons.wikimedia.org/wiki/File:Vd-Blurl.png,
https://commons.wikimedia.org/wiki/File:Vd-Edge3.png, https://commons.wikimedia.org/wiki/File:Vd-Sharp.png.

https://commons.wikimedia.org/wiki/File:Vd-Orig.png
https://commons.wikimedia.org/wiki/File:Vd-Blur1.png
https://commons.wikimedia.org/wiki/File:Vd-Edge3.png
https://commons.wikimedia.org/wiki/File:Vd-Sharp.png

Sobel operator

e Classic filter for edge detection
e Compute local gradients of image intensity

e Uses two convolutions to obtain the vertical gradient G, and the horizontal gradient
G, of an image A, the result is an image G = /G2 + G2

+1 0 -1 +1 +2 +1
Gi=| +2 0 -2 | xA, G, = 0 0 0 |=x*A
+1 0 -1 -1 -2 -1

Application of Sobel:

5 g -
By Simpsons contributor, CC-BY-SA 3.0, https:
//commons .wikimedia.org/wiki/File:Valve_original_(1).PNG

" LA “
By Simpsons contributor, CC-BY-SA 3.0, https:
//commons .wikimedia.org/wiki/File:Valve_sobel_(3).PNG 6

https://commons.wikimedia.org/wiki/File:Valve_original_(1).PNG
https://commons.wikimedia.org/wiki/File:Valve_original_(1).PNG
https://commons.wikimedia.org/wiki/File:Valve_sobel_(3).PNG
https://commons.wikimedia.org/wiki/File:Valve_sobel_(3).PNG

10.2 Convolutional neural networks

Convolutional neural networks

e |dea: neural networks with convolution operations
e Learning the numerical values of convoluted filters
e Define a network exploiting elements of the data structure
e Sound or speech: temporal data (1D convolutions)
e Image: spatial data (2D convolutions)
e Video: spatiotemporal data (3D convolutions)
e Sequence of convolution stages, filtering output of the previous layer
e Allows for more compact modelling than fully connected networks and translation
invariant
e Some components of a convolution network
e Layer of convoluted filters on the different channels
Pooling: maximum (max pool) or average (avg pool) value in a certain convoluted

window
Transfer functions: RelLU, etc.
Near output, fully connected layers (like with multi-layer perceptron)

Convolution network

Samoyed (16); Papillon (5.7); H H ; ;

Convolutions and ReLU
o L s & & 5 & S & A L T o o o o e s s e s S &S & =

WS /S S S S Ry -/ [/ S/ L

Convolutions and RelLU
/' P R I — S - - o

e

Convolutions and ReLU

Blue

From Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, Nature, vol. 521, 28 mai 2015. Accessed online November 6, 2020 at
https://www.nature.com/articles/nature14539.

https://www.nature.com/articles/nature14539

Filters composition

Low-Level| |Mid-Level| |High-Level Trainable
—> — —|
Feature Feature Feature Classifier

From G. Hinton, Y. Bengio and Y. LeCun, Deep Learning NIPS'15 Tutorial, 2015. Accessed online on November 6, 2020 at
https://nips.cc/Conferences/2015/Schedule?showEvent=4891.

https://nips.cc/Conferences/2015/Schedule?showEvent=4891

10.3 Examples of convolutional
networks

LeNeth

e LeNeth: classical convolutional network, proposed in the 1990s

e 3 convolution layers, 2 average pooling layers, 2 fully connected layers
e 60k parameters (from 10M to 100M with modern networks)

o1 feat C3:f. maps 16@10x10

: feature maps S4: f. maps 16@5x5
INPUT

3932 6@28x28

S2: f. maps
6@14x14

FuIIconr%ecﬂon ’ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

From Y. LeCun, L. Bottou, Y. Bengio et P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE,
86(11), 1998. Accessed online on November 6, 2020, at http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.

10

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

AlexNet

o AlexNet: network for object recognition
e Winner of the ImageNet 2012 contest
e Implemented for GPU Computing

Often used as a basic model for representation transfer
e 3 convolution layers, some max pooling layers, 3 fully connected layers

iy

204 2048 \dense

dense dense|

1000

192 128 Max
Max Max pooling
of 4 pooling pooling

204 2048

From A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks. NIPS, 2012. Accessed
online November 6, 2020, at https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper . pdf.

11

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

VGG

o VGGNet: greater depth with simplified topology
e Winner of the ImageNet 2013 contest
e Depth is critical for good performance
e Similar to AlexNet, but with only 3 x 3 convolutions, 2 x 2 max pooling, 3 layers
fully connected and 16 layers in total (VGG-16)

224x224Xx3 224x224x64

£ convolution+ReLU
) max pooling
fully connected+ReL.U

softmax

Source: https://heuritech.files.wordpress.com/2016/02/vggl6.png, accessed November 13, 2018. 12

https://heuritech.files.wordpress.com/2016/02/vgg16.png

e Residual networks: allowing direct connections between non-adjacent layers (skip

links)

weight layer

X
identity

From K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020,
at https://arxiv.org/abs/1512.03385.

e Allows for much deeper and more efficient networks
e Winner of ImageNet 2015 competition (3.57 % top 5 error)
e Facilitates signal optimization and propagation across the network
e Residual block must do better than a treatment directly on the previous block

13

https://arxiv.org/abs/1512.03385

Jnlayerplain Hlayer residual

]
s]
]

]
]

From K. He, X. Zhang, S. Ren, et J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020, at
https://arxiv.org/abs/1512.03385.

14

https://arxiv.org/abs/1512.03385

DenseNet

e Observation: convolution networks can be deeper and get better performance with
close connections throughout the network at its input.
e DenseNet: connect each layer to all of the above layers
e Network with L layers will have L(L + 1)/2 direct connections between layers

From G. Huang, Z. Liu, L. Van Der Maaten et K.Q. Weinberger, Densely Connected Convolutional Networks. CVPR, 2017. Accessed online
on November 6, 2020, at https://arxiv.org/abs/1608.06993.

15

https://arxiv.org/abs/1608.06993

DenseNet

e In practice, we create dense blocks separated by convolution and pooling layers

Input
Prediction
9 Dense Block 1 9 Dense Block 2 9 Dense Block 3
S El 3 3 p & [
s Stele Stmle Stel? “horse”
= gl |5 S 5 8
S @7. S i @. S i @. P)
S S S

. Liu, L. Van Der Maaten et K.Q. Weinberger, Densely Connected Convolutional Networks. CVPR, 2017. Accessed online

From G. Huang, Z
on November 6, 2020, at https://arxiv.org/abs/1608.06993.

e Each layer in a dense block can be relatively narrow, i.e. can contain few neurons.

16

https://arxiv.org/abs/1608.06993

EfficientNet

o EfficientNet: optimal adjustment of convolution network size

e How to adjust network architecture according to available resources?

e |dea: if the image resolution is higher, performance will be better, but the
resources required (depth and width) are greater to properly capture image details.
e Proportional adjustment of depth, width and resolution according to ¢ factor

e Depth: number of network layers, according to a®
e Width: number of channels in each layer, according to 3¢
e Resolution: input image resolution adjustment, according to v

Values of «, 8 and y determined experimentally (grid search) for a network with
doubled resources (a - % - 7% ~ 2)

o MobileNet V2-based architecture, with reverse bottleneck of residual connections

17

Size adjustment in EfficientNet

#channels

Rihsiua iy b wider oo _—
deeper é '

T '
F= R
LR i

-~ higher __higher
- resolution HxW _resoluton _1__resolution
(a) baseline b) width scaling (c) depth scaling (d) resolutlon scaling (e) compound scaling

Taken from M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML, 2019. Accessed online on October
29, 2023 at https://arxiv.org/abs/1905.11946.

18

https://arxiv.org/abs/1905.11946

EfficientNet performances

EfficientNet-B7
AmoebaNet-C
AmoebaNetA _ = ====" -

o
&

% s
7 NASNet-A SENet

e For the same resources, EfficientNet

N .
..+*"" ResNeXt-101
L’
=*" Inception-ResNet-v2

®

offers superior performance

Imagenet Top-1 Accuracy (%)

-7
. i L. "/;'Xceplion
e Eight versions (EfficientNet-B0 to B7) <7 [} : <Resnet 152 Topt A, P
Bb .‘.DenSeNeI'201 ResNet-152 (He et al., 2016) 77.8% 60M
. : EfficientNet-B1 191% 78M
have been proposed for different v Retetelon O 207|300
764 1 . EfficientNet-B3 8L6% 12
1 ResNet-50 SENet (Hu et al., 2018) 827% 146M
resource/performance trade-offs. oo NASNecA @ophetal 018 | 327 M
~ Inception-v2 GPipe (Huang ctal, 2018) T | 84.3% 556M
. . . . ! NASNet-A EfficientNet-B7 84.3% 66M
e Suitable for use in mobile devices and S etad ot e
. 0 20 40 60 80 100 120 140 160 180
edge Computlng Number of Parameters (Millions)

Taken from M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. ICML, 2019. Accessed online on
October 29, 2023, at https://arxiv.org/abs/1905.11946.

19

https://arxiv.org/abs/1905.11946

o Networks presented so far first proposed and tested for object recognition
(classification)

e Other possible tasks in vision: detection, tracking, etc.
e Segmentation: identify coherent regions of the image

e Separate the different regions
e Give a label to each region

e U-Net: network proposed for biomedical imaging

e Fully convolutional network, gives an output image
e Compression of information in a network environment, similar to an auto-encoder
e Skip links allow to preserve spatial structure

20

input
image ||
tile

N output
| segmentation
map

512

m’D’D =>conv 3x3, ReLU

copy and crop

D"D"D l:l:l"i:lﬂ ¥ max pool 2x2

10 4 up-conv 2x2
N:I'PI:I-N:I

= conv 1x1

From O. Ronneberger, P. Fischer, et T. Brox, U-net: Convolutional networks for biomedical image segmentation. MICCAI, 2015. Accessed online on
November 6, 2020 at https://arxiv.org/abs/1505.04597.

21

https://arxiv.org/abs/1505.04597

10.4 Images generation

Generation of examples

e |dea: generate input data based on a desired output

e Generate a model of the data that can produce the output according to the neural
network

e Approach: gradient descent on the input data

OE(x|0
Ax = —néx‘)

e We will generate a new data from the initial value of x and the desired output r.
e Network weights do not change

22

Deep dream

Towers & Pagodas Buildings Birds/& Insects

By Google, CC-BY 4.0, https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

23

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Style transfer

e |dea: transfer the style of an image into a new image
e Compare the content in the convolution layers (e.g. VGG19) and the style (Gram
matrix)

Content loss
IC(x) - Cp)|

Conv layers

Content (p) Conv layers

e

| Styleloss
Conv layers IS() - S(a)|

Green Sea Turtle grazing seagrass, CC-BY-SA-3.0, https://commons.wikimedia.org/wiki/File:Green_Sea_Turtle_grazing_seagrass.jpg

Style (a)

The Great Wave off Kanagawa, public domain, https://commons.wikimedia.org/wiki/File: Tsunami_by_hokusai_19th_centuryjpg

24

Generative Adversarial Networks (GAN)

e GAN model: putting in competition two neural networks
e Discriminative network: distinguishing true data from the problem from generated
data
e Generative network: producing data that looks authentic
e Allows various treatments based on unsupervised learning

e Example: image-to-image translation with conditional GANs

Labels to Street Scene Labels to Facade BW to Color

ut
Day to Night Edges to Photo

will &
_a)

output input output input output

From Isola, Zhu, Zhou and Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017. Accessed online on
October 19, 2020, at https://arxiv.org/pdf/1611.07004v3.pdf. 25

https://arxiv.org/pdf/1611.07004v3.pdf

Generative Adversarial Networks (GAN)

Dataset Real data
\ Discriminative e ———
network Real or fake data?
Generative Generated data OLy4 - Ld
network 904
0a
0L4

_8709

26

Features of GAN

e Key method in the development of generative models
e Most historical generative models capable of realistic results are based on GANs
e E.g., This person does not exist based on StyleGAN

e Self-supervised training, without requiring labelled data or explicit quality metrics
e Triggering advances in the use of self-supervised approaches to train deep networks
e No guarantee of the realism and quality of the data produced

e Model complex to train
e Balance in training generative and discriminative models difficult to maintain,
discriminative task easier than generative task
e Loss of coverage in generation through mode collapse
e Training can be quite computationally intensive

27

10.5 Sequence processing

Recurrent network

e Usual networks (feedforward): data propagated in the network, independent of the
following / previous data

e Sequential data processing important in many contexts
e Recurrent networks: connections with previous values

e Processing With usual algorithms by unrolling the network

Unfold

By fdeloche, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

28

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Long Short-Term Memory (LSTM)

e LSTM model: adding memory to

the network

e Memory cell (state), with four
neurons

o hy

e Input
e Input activation

e Forgetfulness activation

Output activation
By Graves, Mohamed and Hinton, CC-SA 4.0, https:

//en.wikipedia.org/wiki/File:Peephole_Long_Short-Term_Memory.svg

29

https://en.wikipedia.org/wiki/File:Peephole_Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/File:Peephole_Long_Short-Term_Memory.svg

LSTM variants

e Bidirectional LSTM (BiLSTM): process sequence in the two directions
e Additional cells to process data in reverse direction
e Allows better use of sequence content
e Particularly useful for natural language processing

e GRU (Gated Recurrent Unit): simplification of the LSTM model

e Simplification of the LSTM cell model by combining input activation and forgetting.
e Compromises between complexity and performance

30

LSTM strengths and weaknesses

e Strengths of LSTMs

e Able to capture distant relationships in sequences

e Has demonstrated great versatility in its application to sequence processing (e.g.
automated translation, speech recognition)

e Offers better control over vanishing gradient, which is an issue with classical
recurrent networks

o Weaknesses of LSTMs

e Complex models, with a high number of parameters, requiring long training times
and large datasets
e Tends to overfit, especially on small datasets

31

10.6 Transformer networks

Transformer networks

e Transformer networks
e Uses an attention mechanism to establish relationships between elements in a
sequence (e.g. words in a sentence)
e Designed to enable parallel processing with multiple heads, allows efficient use of
GPUs
e Include an encoder component and a decoder component
e Does not use recurrence, attention mechanism gives ability to use whole context
(long-term memory)
e Central models for large language models (GPT, BERT)

e Also used with images (vision transformers (ViT)), speech recognition, etc.

32

ansformer networks functioning

Output
Probabilities

Softnax ® |[nput: transform input sequence into a vector

® For text, lexical embedding + positional encoding

of each word

Add&Norm

Add&Norm
Forward Multi-Head
Vi Attention
Add&Norm
Multi-Head
Attention

Add&Norm
Masked
Multi-Head
Attention

Positional
Encoding

—

Input J
Embedding Positional
Encoding

Input Output

Output
(shifted right)

Par Yuening Jia, CC BY-SA 3.0 DEED,
https://commons.wikimedia.org/wiki/File:
The-Transformer-model-architecture.png.

33

https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png

ansformer networks functioning

Output
Probabilities

Softnax ® |[nput: transform input sequence into a vector

® For text, lexical embedding + positional encoding

of each word

® Encoder: multi-headed attention + renormalization

—— Multi-Head ® Attention calculated between all elements
Add&Nomm Attention
Multi-Head
Attention

® Normalization by fully connected layers
Masked
Multi-Head
Attention

Input J
Embedding Positional
Encoding

Input Output

Positional
Encoding

Embedding

Output
(shifted right)

Par Yuening Jia, CC BY-SA 3.0 DEED,
https://commons.wikimedia.org/wiki/File:
The-Transformer-model-architecture.png.

33

https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png

ansformer networks functioning

Output
Probabilities

Softnax ® |[nput: transform input sequence into a vector

T of each word

® Encoder: multi-headed attention + renormalization

® For text, lexical embedding + positional encoding

Add&Norm

® Attention calculated between all elements

Add&Norm

Multi-Head
Attention

® Normalization by fully connected layers

Masked ® OQutput: transform output sequence into a vector

Positional Multi-Head
ositiona Attention
Encoding P

Tnput

Embedding Posttional
Encoding
Input Output
Embedding
Output
shifted right)

Par Yuening Jia, CC BY-SA 3.0 DEED,
https://commons.wikimedia.org/wiki/File:
The-Transformer-model-architecture.png.

33

https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png

Transformer networks functioning

Cutput
Probabilities
Sofumax ® |[nput: transform input sequence into a vector

Add&Norm

® For text, lexical embedding + positional encoding

of each word

Add&Norm

® Encoder: multi-headed attention + renormalization

Multi-Head ® Attention calculated between all elements

Attention

Add&Norm

® Normalization by fully connected layers

Multi-Head
Attention
Masked ® Qutput: transform output sequence into a vector
Positional Multi-Head
Encoding ®_€P Attention . . .
N ® Decoder: attention mechanism on output and input
Input
9_@ Eocoding ® First steps only on masked output
Input Guiput ® Next steps combining output and input
Embedding

representation
o] . .
shiRedrght ® Fully connected layer normalization

Par Yuening Jia, CC BY-SA 3.0 DEED,
https://commons.wikimedia.org/wiki/File:
The-Transformer-model-architecture.png.

® Output next word probabilities

33

https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png

Attention mechanism

e Compute the attention between the query Q, the key K and the value V
according to:

Attention(Q,K,V) = softma: <QKT> \Y
i ,K,V) = softmax
Vi

e The values of Q, K and V result from the application of weights Wy, W, and W,
on the data X
e Division by /dj to stabilize the gradient (dy: key size K)

e Each head works in parallel with its own weights W,, W, and W, .

34

Attention mechanism

Query W,
X Q
X =
Key Wi
X K
O—>Z
X =
Value W
V.o
X =

35

Attention mechanism

The
monkey
ate

that
banana
because
it

was
too
hungry

The
monkey
ate

that
banana
because
it

was

too
hungry

36

Example: application to translation

a) Word Transformer Transformer Transformer
embeddings block block block
The —» - > -
soup > - - -
tasted —» = - o —n
like —> - - -
socks > s - -
Transformer with masked self-attention + Probabilities
b) Word encoder-decoder attention Linear + over target
embeddings Softmax (next) token
v v v
<start> —» - - - - -
la —» - - - - =
soupe —> S\ » DN L S\ - -
avait —> , i R e \ y - XN - -
le —» - AN\ L AN\ " > \J e >
golt —» - RN - R - RN -
de - - o =N - e -
chaussettes —» - Yo 4 - — -
SO NN
g8 38
. Pg
#g 2
- <
S

Source: https://www.borealisai.com/wp-content/uploads/2021/06/T14_10.png, accessed on November 1, 2023. 37

https://www.borealisai.com/wp-content/uploads/2021/06/T14_10.png

Large Language Models

e BERT (Bidirectional Encoder Representations from Transformers)

e Proposed in 2018 by a team of Google researchers

e Consisting of a lexical embedding module, several layers of self-attentive encoders,
and conversion to probabilistic output

e Rapidly becoming a central model in natural language processing

e Since 2020, virtually all English search queries on Google are processed with BERT

e GPT (Generative Pre-trained Transformer)

e OpenAl’s family of transformer-based models, proposed in 2018 (GPT-1)

e GPT-3: GPT-1 4+ modified normalization (GPT-2) + scaling, proposed 2020, 175G
parameters trained on 500G tokens

e GPT-4: undisclosed architecture, but estimated at 1.7T (1700G) parameters

e ChatGPT: integration of GPT-3.5 / GPT-4 and reinforcement learning with human
feedback (RLHF)

38

Vision transformers (ViT)

e Vision transformers (ViT): adapting the transformer architecture to computer
vision
e Instead of processing word sequences, processes fixed size, non-overlapping image
patches
e Each patch is represented by a 1D vector, with positional information added to the
representation
e Patch representation provided as a sequence to the transformer network

e ViT characteristics

e Able to capture complex and distant relationships in images, without requiring
convolution layers

e Can achieve state-of-the-art performance with sufficient data and resources

e Requires very large datasets and intensive training to perform well

39

Vision transformers (ViT)

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

i
I
I
I
I
I
I
|
. 1 -
i > 0 () @5 @5 | [Ao
I
I
|
I
I
1

* Extra learnable . . .
[class] embedding [Linear Projection of Flattened Patches]

I
—— T

Embedded
Patches
Taken from Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR, 2020. Accessed on-line on
November 2, 2023, at https://arxiv.org/pdf/2010.11929.pdf. 40

https://arxiv.org/pdf/2010.11929.pdf

10.7 Diffusion models

Diffusion models

e Diffusion models: class of generative models simulating a random diffusion
process transforming a data instance into a noise instance
e Inspired by physics, with diffusion of particles from a medium of high concentration
to a low concentration one
e Used for image generation, denoising or inpainting
e Diffusion processes
e Forward diffusion: start with a clear image to which light noise is successively added
until the image is nothing but noise
e Reverse diffusion: start the process with an image of pure noise, on which successive
denoising operations are applied to obtain a clear image
e Each forward or reverse diffusion step guided by a transition function, typically
Gaussian, conditioned on the current state
e Once the reverse diffusion (denoising) mechanics have been learned, they can be
used to generate new images

41

Forward diffusion process

Forward diffusion process (fixed)

Data Noise

Xo X3 X, X3 X4 Xp
~— Y~ Y~ Y~ Y~ N~

L N L N L N

T
q(xixi1) = N(xe; V1 — Bixe_1, D) = q(xrr(X0) = Hq(xt|xr—1) (joint)
=1

Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,
https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.

42

https://cvpr2023-tutorial-diffusion-models.github.io/

Reverse diffusion process

Reverse denoising process (generative)

Data Noise

p(xr) = N(x7;0,1)
po(xt—1]xz) = N (x¢—1: pg(x,), o7T) i1

= py(xor) = p(xp) [[po(xi—1/x¢)

N J

~
Trainable network
(U-net, Denoising Autoencoder) 1
Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,
https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.

43

https://cvpr2023-tutorial-diffusion-models.github.io/

Training diffusion models

e Forward diffusion: typically consists of applying Gaussian noise to pixels

e Repeated application of a small amount of Gaussian noise transforms the set of
pixels into random values having a Gaussian distribution
e Level of noise applied can vary in the sequence according to a schedule

e Reverse diffusion: neural network to remove noise

e Use forward diffusion data to train the denoising network
e Denoising network receives current noise level
e U-Net commonly used as denoising network

e Reverse diffusion process can be conditioned

e Specific class targeted
e Text query, using vector representation (lexical embedding or transformer network)

a4

Strengths and weaknesses of diffusion models

e Strengths of diffusion models

e Capable of generating high-quality data
e Flexible and can be adapted to different data types, works with complex data
distributions

o Weaknesses of diffusion models

e Generation process can be computationally heavy, with the many iterations required
in reverse diffusion.
e Training is computationally heavy

e These models form the basis of generative image models such as DALL-E
(OpenAl), Midjourney or Stable Diffusion.

45

	10.1 Convolution and image processing
	10.2 Convolutional neural networks
	10.3 Examples of convolutional networks
	10.4 Images generation
	10.5 Sequence processing
	10.6 Transformer networks
	10.7 Diffusion models

