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10.1 Convolution and image

processing



Convolution

• Convolution: product of two functions on the same domain

f (x) ∗ g(x) ≡
∫ ∞

t=−∞
f (x − t) g(t) dt

• Discrete formulation

f (x) ∗ g(x) ≡
∞∑

t=−∞
f (x − t) g(t)
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Convolution example

By Lautaro Carmona, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif.
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Convolution and density estimation

• Off-center Dirac distribution

δ(x − t) =




∞ if x = t

0 otherwise
,

∫ ∞

x=−∞
δ(x − t) dx = 1.

• Convolution on off-center Diracs

f (x) ∗ δ(x − u) = f (x − u)

• Kernel density estimation: kernel convolution with several Diracs centrered on the

data

p̂(x) =
1

Nh

N∑

t=1

K

(
x − x t

h

)
=

1

Nh

N∑

t=1

K
(x
h

)
∗ δ(x − x t)
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Image processing

• 2D convolution is a building block for image processing

Source: https://thigiacmaytinh.com/wp-content/uploads/2018/05/kernel.png, accessed November 13, 2018.
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Examples of filters

Identity (3× 3): 0 0 0

0 1 0

0 0 0


Gaussian blur:

1

16

 1 2 1

2 4 2

1 2 1



Edge detection: −1 −1 −1

−1 8 −1

−1 −1 −1


Sharpen: 0 −1 0

−1 5 −1

0 −1 0


By Michael Plotke, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Vd-Orig.png,

https://commons.wikimedia.org/wiki/File:Vd-Blur1.png,

https://commons.wikimedia.org/wiki/File:Vd-Edge3.png, https://commons.wikimedia.org/wiki/File:Vd-Sharp.png.
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Sobel operator

• Classic filter for edge detection
• Compute local gradients of image intensity

• Uses two convolutions to obtain the vertical gradient Gx and the horizontal gradient

Gy of an image A, the result is an image G =
√
G2

x + G2
y

Gx =




+1 0 −1

+2 0 −2

+1 0 −1


 ∗ A, Gy =




+1 +2 +1

0 0 0

−1 −2 −1


 ∗ A

Original image:

By Simpsons contributor, CC-BY-SA 3.0, https:

//commons.wikimedia.org/wiki/File:Valve_original_(1).PNG

Application of Sobel:

By Simpsons contributor, CC-BY-SA 3.0, https:

//commons.wikimedia.org/wiki/File:Valve_sobel_(3).PNG 6
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10.2 Convolutional neural networks



Convolutional neural networks

• Idea: neural networks with convolution operations
• Learning the numerical values of convoluted filters

• Define a network exploiting elements of the data structure

• Sound or speech: temporal data (1D convolutions)

• Image: spatial data (2D convolutions)

• Video: spatiotemporal data (3D convolutions)

• Sequence of convolution stages, filtering output of the previous layer

• Allows for more compact modelling than fully connected networks and translation

invariant

• Some components of a convolution network
• Layer of convoluted filters on the different channels

• Pooling: maximum (max pool) or average (avg pool) value in a certain convoluted

window

• Transfer functions: ReLU, etc.

• Near output, fully connected layers (like with multi-layer perceptron)
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Convolution network

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

4 3 8  |  N A T U R E  |  V O L  5 2 1  |  2 8  M A Y  2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

From Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, Nature, vol. 521, 28 mai 2015. Accessed online November 6, 2020 at

https://www.nature.com/articles/nature14539.
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Filters composition

Y LeCun 
Why Multiple Layers? The World is Compositional 

" Hierarchy of representations with increasing level of abstraction 

" Each stage is a kind of trainable feature transform 

" Image recognition: Pixel → edge → texton → motif → part → object 

" Text: Character → word → word group → clause → sentence → story 

" Speech: Sample → spectral band → sound → … → phone → phoneme → word 

 

 
Trainable  
Classifier 

Low-Level 
Feature 

Mid-Level 
Feature 

High-Level 
Feature 

From G. Hinton, Y. Bengio and Y. LeCun, Deep Learning NIPS’15 Tutorial, 2015. Accessed online on November 6, 2020 at

https://nips.cc/Conferences/2015/Schedule?showEvent=4891.
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10.3 Examples of convolutional

networks



LeNet5

• LeNet5: classical convolutional network, proposed in the 1990s

• 3 convolution layers, 2 average pooling layers, 2 fully connected layers

• 60k parameters (from 10M to 100M with modern networks)

From Y. LeCun, L. Bottou, Y. Bengio et P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE,

86(11), 1998. Accessed online on November 6, 2020, at http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.
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AlexNet

• AlexNet: network for object recognition
• Winner of the ImageNet 2012 contest

• Implemented for GPU Computing

• Often used as a basic model for representation transfer

• 8 convolution layers, some max pooling layers, 3 fully connected layers

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

From A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks. NIPS, 2012. Accessed

online November 6, 2020, at https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
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VGG

• VGGNet: greater depth with simplified topology
• Winner of the ImageNet 2013 contest

• Depth is critical for good performance

• Similar to AlexNet, but with only 3× 3 convolutions, 2× 2 max pooling, 3 layers

fully connected and 16 layers in total (VGG-16)

Source: https://heuritech.files.wordpress.com/2016/02/vgg16.png, accessed November 13, 2018. 12
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ResNet

• Residual networks: allowing direct connections between non-adjacent layers (skip

links)

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

From K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020,

at https://arxiv.org/abs/1512.03385.

• Allows for much deeper and more efficient networks
• Winner of ImageNet 2015 competition (3.57% top 5 error)

• Facilitates signal optimization and propagation across the network

• Residual block must do better than a treatment directly on the previous block

13

https://arxiv.org/abs/1512.03385


ResNet
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

From K. He, X. Zhang, S. Ren, et J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020, at

https://arxiv.org/abs/1512.03385.
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DenseNet

• Observation: convolution networks can be deeper and get better performance with

close connections throughout the network at its input.
• DenseNet: connect each layer to all of the above layers

• Network with L layers will have L(L+ 1)/2 direct connections between layers

Densely Connected Convolutional Networks
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Cornell University
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Zhuang Liu⇤

Tsinghua University
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Abstract

Recent work has shown that convolutional networks can
be substantially deeper, more accurate, and efficient to train
if they contain shorter connections between layers close to
the input and those close to the output. In this paper, we
embrace this observation and introduce the Dense Convo-
lutional Network (DenseNet), which connects each layer
to every other layer in a feed-forward fashion. Whereas
traditional convolutional networks with L layers have L
connections—one between each layer and its subsequent
layer—our network has L(L+1)

2 direct connections. For
each layer, the feature-maps of all preceding layers are
used as inputs, and its own feature-maps are used as inputs
into all subsequent layers. DenseNets have several com-
pelling advantages: they alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage fea-
ture reuse, and substantially reduce the number of parame-
ters. We evaluate our proposed architecture on four highly
competitive object recognition benchmark tasks (CIFAR-10,
CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig-
nificant improvements over the state-of-the-art on most of
them, whilst requiring less computation to achieve high per-
formance. Code and pre-trained models are available at
https://github.com/liuzhuang13/DenseNet.

1. Introduction

Convolutional neural networks (CNNs) have become
the dominant machine learning approach for visual object
recognition. Although they were originally introduced over
20 years ago [18], improvements in computer hardware and
network structure have enabled the training of truly deep
CNNs only recently. The original LeNet5 [19] consisted of
5 layers, VGG featured 19 [29], and only last year Highway

⇤Authors contributed equally

x0

x1
H1

x2
H2

H3

H4

x3

x4

Figure 1: A 5-layer dense block with a growth rate of k = 4.
Each layer takes all preceding feature-maps as input.

Networks [34] and Residual Networks (ResNets) [11] have
surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research
problem emerges: as information about the input or gra-
dient passes through many layers, it can vanish and “wash
out” by the time it reaches the end (or beginning) of the
network. Many recent publications address this or related
problems. ResNets [11] and Highway Networks [34] by-
pass signal from one layer to the next via identity connec-
tions. Stochastic depth [13] shortens ResNets by randomly
dropping layers during training to allow better information
and gradient flow. FractalNets [17] repeatedly combine sev-
eral parallel layer sequences with different number of con-
volutional blocks to obtain a large nominal depth, while
maintaining many short paths in the network. Although
these different approaches vary in network topology and
training procedure, they all share a key characteristic: they
create short paths from early layers to later layers.
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DenseNet

• In practice, we create dense blocks separated by convolution and pooling layers
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Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

ResNets can improve its performance provided the depth is
sufficient [42]. FractalNets also achieve competitive results
on several datasets using a wide network structure [17].

Instead of drawing representational power from ex-
tremely deep or wide architectures, DenseNets exploit the
potential of the network through feature reuse, yielding con-
densed models that are easy to train and highly parameter-
efficient. Concatenating feature-maps learned by different
layers increases variation in the input of subsequent layers
and improves efficiency. This constitutes a major difference
between DenseNets and ResNets. Compared to Inception
networks [36, 37], which also concatenate features from dif-
ferent layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations
which have yielded competitive results. The Network in
Network (NIN) [22] structure includes micro multi-layer
perceptrons into the filters of convolutional layers to ex-
tract more complicated features. In Deeply Supervised Net-
work (DSN) [20], internal layers are directly supervised
by auxiliary classifiers, which can strengthen the gradients
received by earlier layers. Ladder Networks [27, 25] in-
troduce lateral connections into autoencoders, producing
impressive accuracies on semi-supervised learning tasks.
In [39], Deeply-Fused Nets (DFNs) were proposed to im-
prove information flow by combining intermediate layers
of different base networks. The augmentation of networks
with pathways that minimize reconstruction losses was also
shown to improve image classification models [43].

3. DenseNets
Consider a single image x0 that is passed through a con-

volutional network. The network comprises L layers, each
of which implements a non-linear transformation H`(·),
where ` indexes the layer. H`(·) can be a composite func-
tion of operations such as Batch Normalization (BN) [14],
rectified linear units (ReLU) [6], Pooling [19], or Convolu-
tion (Conv). We denote the output of the `th layer as x`.

ResNets. Traditional convolutional feed-forward net-
works connect the output of the `th layer as input to the
(` + 1)th layer [16], which gives rise to the following
layer transition: x` = H`(x`�1). ResNets [11] add a
skip-connection that bypasses the non-linear transforma-
tions with an identity function:

x` = H`(x`�1) + x`�1. (1)

An advantage of ResNets is that the gradient can flow di-
rectly through the identity function from later layers to the
earlier layers. However, the identity function and the output
of H` are combined by summation, which may impede the
information flow in the network.

Dense connectivity. To further improve the information
flow between layers we propose a different connectivity
pattern: we introduce direct connections from any layer
to all subsequent layers. Figure 1 illustrates the layout of
the resulting DenseNet schematically. Consequently, the
`th layer receives the feature-maps of all preceding layers,
x0, . . . ,x`�1, as input:

x` = H`([x0,x1, . . . ,x`�1]), (2)

where [x0,x1, . . . ,x`�1] refers to the concatenation of the
feature-maps produced in layers 0, . . . , `�1. Because of its
dense connectivity we refer to this network architecture as
Dense Convolutional Network (DenseNet). For ease of im-
plementation, we concatenate the multiple inputs of H`(·)
in eq. (2) into a single tensor.

Composite function. Motivated by [12], we define H`(·)
as a composite function of three consecutive operations:
batch normalization (BN) [14], followed by a rectified lin-
ear unit (ReLU) [6] and a 3 ⇥ 3 convolution (Conv).

Pooling layers. The concatenation operation used in
Eq. (2) is not viable when the size of feature-maps changes.
However, an essential part of convolutional networks is
down-sampling layers that change the size of feature-maps.
To facilitate down-sampling in our architecture we divide
the network into multiple densely connected dense blocks;
see Figure 2. We refer to layers between blocks as transition
layers, which do convolution and pooling. The transition
layers used in our experiments consist of a batch normal-
ization layer and an 1⇥1 convolutional layer followed by a
2⇥2 average pooling layer.

Growth rate. If each function H` produces k feature-
maps, it follows that the `th layer has k0 +k⇥ (`�1) input
feature-maps, where k0 is the number of channels in the in-
put layer. An important difference between DenseNet and
existing network architectures is that DenseNet can have
very narrow layers, e.g., k = 12. We refer to the hyper-
parameter k as the growth rate of the network. We show in
Section 4 that a relatively small growth rate is sufficient to

From G. Huang, Z. Liu, L. Van Der Maaten et K.Q. Weinberger, Densely Connected Convolutional Networks. CVPR, 2017. Accessed online

on November 6, 2020, at https://arxiv.org/abs/1608.06993.

• Each layer in a dense block can be relatively narrow, i.e. can contain few neurons.
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EfficientNet

• EfficientNet: optimal adjustment of convolution network size

• How to adjust network architecture according to available resources?

• Idea: if the image resolution is higher, performance will be better, but the

resources required (depth and width) are greater to properly capture image details.

• Proportional adjustment of depth, width and resolution according to ϕ factor

• Depth: number of network layers, according to αϕ

• Width: number of channels in each layer, according to βϕ

• Resolution: input image resolution adjustment, according to γϕ

• Values of α, β and γ determined experimentally (grid search) for a network with

doubled resources (α · β2 · γ2 ≈ 2)

• MobileNet V2-based architecture, with reverse bottleneck of residual connections
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Size adjustment in EfficientNet
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

#channels

layer_i

resolution HxW

wider

deeper

higher 
resolution

higher 
resolution

deeper

wider

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

and resolution with a set of fixed scaling coefficients. For
example, if we want to use 2N times more computational
resources, then we can simply increase the network depth by
↵N , width by �N , and image size by �N , where ↵,�, � are
constant coefficients determined by a small grid search on
the original small model. Figure 2 illustrates the difference
between our scaling method and conventional methods.

Intuitively, the compound scaling method makes sense be-
cause if the input image is bigger, then the network needs
more layers to increase the receptive field and more channels
to capture more fine-grained patterns on the bigger image. In
fact, previous theoretical (Raghu et al., 2017; Lu et al., 2018)
and empirical results (Zagoruyko & Komodakis, 2016) both
show that there exists certain relationship between network
width and depth, but to our best knowledge, we are the
first to empirically quantify the relationship among all three
dimensions of network width, depth, and resolution.

We demonstrate that our scaling method work well on exist-
ing MobileNets (Howard et al., 2017; Sandler et al., 2018)
and ResNet (He et al., 2016). Notably, the effectiveness of
model scaling heavily depends on the baseline network; to
go even further, we use neural architecture search (Zoph
& Le, 2017; Tan et al., 2019) to develop a new baseline
network, and scale it up to obtain a family of models, called
EfficientNets. Figure 1 summarizes the ImageNet perfor-
mance, where our EfficientNets significantly outperform
other ConvNets. In particular, our EfficientNet-B7 surpasses
the best existing GPipe accuracy (Huang et al., 2018), but
using 8.4x fewer parameters and running 6.1x faster on in-
ference. Compared to the widely used ResNet-50 (He et al.,
2016), our EfficientNet-B4 improves the top-1 accuracy
from 76.3% to 83.0% (+6.7%) with similar FLOPS. Besides
ImageNet, EfficientNets also transfer well and achieve state-

of-the-art accuracy on 5 out of 8 widely used datasets, while
reducing parameters by up to 21x than existing ConvNets.

2. Related Work
ConvNet Accuracy: Since AlexNet (Krizhevsky et al.,
2012) won the 2012 ImageNet competition, ConvNets have
become increasingly more accurate by going bigger: while
the 2014 ImageNet winner GoogleNet (Szegedy et al., 2015)
achieves 74.8% top-1 accuracy with about 6.8M parameters,
the 2017 ImageNet winner SENet (Hu et al., 2018) achieves
82.7% top-1 accuracy with 145M parameters. Recently,
GPipe (Huang et al., 2018) further pushes the state-of-the-art
ImageNet top-1 validation accuracy to 84.3% using 557M
parameters: it is so big that it can only be trained with a
specialized pipeline parallelism library by partitioning the
network and spreading each part to a different accelera-
tor. While these models are mainly designed for ImageNet,
recent studies have shown better ImageNet models also per-
form better across a variety of transfer learning datasets
(Kornblith et al., 2019), and other computer vision tasks
such as object detection (He et al., 2016; Tan et al., 2019).
Although higher accuracy is critical for many applications,
we have already hit the hardware memory limit, and thus
further accuracy gain needs better efficiency.

ConvNet Efficiency: Deep ConvNets are often over-
parameterized. Model compression (Han et al., 2016; He
et al., 2018; Yang et al., 2018) is a common way to re-
duce model size by trading accuracy for efficiency. As mo-
bile phones become ubiquitous, it is also common to hand-
craft efficient mobile-size ConvNets, such as SqueezeNets
(Iandola et al., 2016; Gholami et al., 2018), MobileNets
(Howard et al., 2017; Sandler et al., 2018), and ShuffleNets

Taken from M. Tan, Q.V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML, 2019. Accessed online on October

29, 2023 at https://arxiv.org/abs/1905.11946.
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EfficientNet performances

• For the same resources, EfficientNet

offers superior performance

• Eight versions (EfficientNet-B0 to B7)

have been proposed for different

resource/performance trade-offs.

• Suitable for use in mobile devices and

edge computing

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan 1 Quoc V. Le 1

Abstract
Convolutional Neural Networks (ConvNets) are
commonly developed at a fixed resource budget,
and then scaled up for better accuracy if more
resources are available. In this paper, we sys-
tematically study model scaling and identify that
carefully balancing network depth, width, and res-
olution can lead to better performance. Based
on this observation, we propose a new scaling
method that uniformly scales all dimensions of
depth/width/resolution using a simple yet highly
effective compound coefficient. We demonstrate
the effectiveness of this method on scaling up
MobileNets and ResNet.

To go even further, we use neural architec-
ture search to design a new baseline network
and scale it up to obtain a family of models,
called EfficientNets, which achieve much
better accuracy and efficiency than previous
ConvNets. In particular, our EfficientNet-B7
achieves state-of-the-art 84.3% top-1 accuracy
on ImageNet, while being 8.4x smaller and
6.1x faster on inference than the best existing
ConvNet. Our EfficientNets also transfer well and
achieve state-of-the-art accuracy on CIFAR-100
(91.7%), Flowers (98.8%), and 3 other transfer
learning datasets, with an order of magnitude
fewer parameters. Source code is at https:

//github.com/tensorflow/tpu/tree/

master/models/official/efficientnet.

1. Introduction
Scaling up ConvNets is widely used to achieve better accu-
racy. For example, ResNet (He et al., 2016) can be scaled
up from ResNet-18 to ResNet-200 by using more layers;
Recently, GPipe (Huang et al., 2018) achieved 84.3% Ima-
geNet top-1 accuracy by scaling up a baseline model four

1Google Research, Brain Team, Mountain View, CA. Corre-
spondence to: Mingxing Tan <tanmingxing@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019.

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)

74

76

78

80

82

84

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

ResNet-34

ResNet-50

ResNet-152

DenseNet-201

Inception-v2

Inception-ResNet-v2

NASNet-A

NASNet-A

ResNeXt-101

Xception

AmoebaNet-A
AmoebaNet-C

SENet

B0

B3

B4
B5

B6
EfficientNet-B7

Top1 Acc. #Params
ResNet-152 (He et al., 2016) 77.8% 60M
EfficientNet-B1 79.1% 7.8M
ResNeXt-101 (Xie et al., 2017) 80.9% 84M
EfficientNet-B3 81.6% 12M
SENet (Hu et al., 2018) 82.7% 146M
NASNet-A (Zoph et al., 2018) 82.7% 89M
EfficientNet-B4 82.9% 19M
GPipe (Huang et al., 2018) † 84.3% 556M
EfficientNet-B7 84.3% 66M

†Not plotted

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.3% top-1 accuracy but being 8.4x smaller
and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152. Details are in Table 2 and 4.

time larger. However, the process of scaling up ConvNets
has never been well understood and there are currently many
ways to do it. The most common way is to scale up Con-
vNets by their depth (He et al., 2016) or width (Zagoruyko &
Komodakis, 2016). Another less common, but increasingly
popular, method is to scale up models by image resolution
(Huang et al., 2018). In previous work, it is common to scale
only one of the three dimensions – depth, width, and image
size. Though it is possible to scale two or three dimensions
arbitrarily, arbitrary scaling requires tedious manual tuning
and still often yields sub-optimal accuracy and efficiency.

In this paper, we want to study and rethink the process
of scaling up ConvNets. In particular, we investigate the
central question: is there a principled method to scale up
ConvNets that can achieve better accuracy and efficiency?
Our empirical study shows that it is critical to balance all
dimensions of network width/depth/resolution, and surpris-
ingly such balance can be achieved by simply scaling each
of them with constant ratio. Based on this observation, we
propose a simple yet effective compound scaling method.
Unlike conventional practice that arbitrary scales these fac-
tors, our method uniformly scales network width, depth,
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U-Net

• Networks presented so far first proposed and tested for object recognition
(classification)

• Other possible tasks in vision: detection, tracking, etc.

• Segmentation: identify coherent regions of the image

• Separate the different regions

• Give a label to each region

• U-Net: network proposed for biomedical imaging

• Fully convolutional network, gives an output image

• Compression of information in a network environment, similar to an auto-encoder

• Skip links allow to preserve spatial structure

20



U-Net
U-Net: Convolutional Networks for Biomedical Image Segmentation 235

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [2] has two drawbacks. First, it is quite
slow because the network must be run separately for each patch, and there is a lot
of redundancy due to overlapping patches. Secondly, there is a trade-off between
localization accuracy and the use of context. Larger patches require more max-
pooling layers that reduce the localization accuracy, while small patches allow
the network to see only little context. More recent approaches [11,4] proposed a
classifier output that takes into account the features from multiple layers. Good
localization and the use of context are possible at the same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled
output. A successive convolution layer can then learn to assemble a more precise
output based on this information.

From O. Ronneberger, P. Fischer, et T. Brox, U-net: Convolutional networks for biomedical image segmentation. MICCAI, 2015. Accessed online on

November 6, 2020 at https://arxiv.org/abs/1505.04597.
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10.4 Images generation



Generation of examples

• Idea: generate input data based on a desired output

• Generate a model of the data that can produce the output according to the neural

network

• Approach: gradient descent on the input data

∆x = −η
∂E (x|θ)

∂x

• We will generate a new data from the initial value of x and the desired output r.

• Network weights do not change

22



Deep dream

By Google, CC-BY 4.0, https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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Style transfer

• Idea: transfer the style of an image into a new image

• Compare the content in the convolution layers (e.g. VGG19) and the style (Gram

matrix)

Conv layers

Conv layers

Conv layers

Content loss
|C(x) - C(p)|

Style loss
|S(x) - S(a)|

Content (p)

Style (a) Green Sea Turtle grazing seagrass, CC-BY-SA-3.0, https://commons.wikimedia.org/wiki/File:Green_Sea_Turtle_grazing_seagrass.jpg
The Great Wave off Kanagawa, public domain, https://commons.wikimedia.org/wiki/File:Tsunami_by_hokusai_19th_century.jpg
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Generative Adversarial Networks (GAN)

• GAN model: putting in competition two neural networks
• Discriminative network: distinguishing true data from the problem from generated

data

• Generative network: producing data that looks authentic

• Allows various treatments based on unsupervised learning

• Example: image-to-image translation with conditional GANs

From Isola, Zhu, Zhou and Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017. Accessed online on

October 19, 2020, at https://arxiv.org/pdf/1611.07004v3.pdf. 25
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Generative Adversarial Networks (GAN)

Generative
network

Discriminative
network

Dataset Real data

Generated data

Real or fake data?
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Features of GAN

• Key method in the development of generative models

• Most historical generative models capable of realistic results are based on GANs

• E.g., This person does not exist based on StyleGAN

• Self-supervised training, without requiring labelled data or explicit quality metrics

• Triggering advances in the use of self-supervised approaches to train deep networks

• No guarantee of the realism and quality of the data produced

• Model complex to train

• Balance in training generative and discriminative models difficult to maintain,

discriminative task easier than generative task

• Loss of coverage in generation through mode collapse

• Training can be quite computationally intensive
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10.5 Sequence processing



Recurrent network

• Usual networks (feedforward): data propagated in the network, independent of the
following / previous data

• Sequential data processing important in many contexts

• Recurrent networks: connections with previous values

• Processing with usual algorithms by unrolling the network
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By fdeloche, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Long Short-Term Memory (LSTM)

By Graves, Mohamed and Hinton, CC-SA 4.0, https:

//en.wikipedia.org/wiki/File:Peephole_Long_Short-Term_Memory.svg

• LSTM model: adding memory to

the network

• Memory cell (state), with four
neurons

• Input

• Input activation

• Forgetfulness activation

• Output activation
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LSTM variants

• Bidirectional LSTM (BiLSTM): process sequence in the two directions

• Additional cells to process data in reverse direction

• Allows better use of sequence content

• Particularly useful for natural language processing

• GRU (Gated Recurrent Unit): simplification of the LSTM model

• Simplification of the LSTM cell model by combining input activation and forgetting.

• Compromises between complexity and performance
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LSTM strengths and weaknesses

• Strengths of LSTMs

• Able to capture distant relationships in sequences

• Has demonstrated great versatility in its application to sequence processing (e.g.

automated translation, speech recognition)

• Offers better control over vanishing gradient, which is an issue with classical

recurrent networks

• Weaknesses of LSTMs

• Complex models, with a high number of parameters, requiring long training times

and large datasets

• Tends to overfit, especially on small datasets
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10.6 Transformer networks



Transformer networks

• Transformer networks

• Uses an attention mechanism to establish relationships between elements in a

sequence (e.g. words in a sentence)

• Designed to enable parallel processing with multiple heads, allows efficient use of

GPUs

• Include an encoder component and a decoder component

• Does not use recurrence, attention mechanism gives ability to use whole context

(long-term memory)

• Central models for large language models (GPT, BERT)

• Also used with images (vision transformers (ViT)), speech recognition, etc.
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Transformer networks functioning

Par Yuening Jia, CC BY-SA 3.0 DEED,

https://commons.wikimedia.org/wiki/File:

The-Transformer-model-architecture.png.

• Input: transform input sequence into a vector

• For text, lexical embedding + positional encoding

of each word

• Encoder: multi-headed attention + renormalization

• Attention calculated between all elements

• Normalization by fully connected layers

• Output: transform output sequence into a vector

• Decoder: attention mechanism on output and input

• First steps only on masked output

• Next steps combining output and input

representation

• Fully connected layer normalization

• Output next word probabilities
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Attention mechanism

• Compute the attention between the query Q, the key K and the value V

according to:

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

.

• The values of Q, K and V result from the application of weights Wq, Wk and Wv

on the data X

• Division by
√
dk to stabilize the gradient (dk : key size K)

• Each head works in parallel with its own weights Wq, Wk and Wv .
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Attention mechanism
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Example: application to translation

Source: https://www.borealisai.com/wp-content/uploads/2021/06/T14_10.png, accessed on November 1, 2023. 37

https://www.borealisai.com/wp-content/uploads/2021/06/T14_10.png


Large Language Models

• BERT (Bidirectional Encoder Representations from Transformers)

• Proposed in 2018 by a team of Google researchers

• Consisting of a lexical embedding module, several layers of self-attentive encoders,

and conversion to probabilistic output

• Rapidly becoming a central model in natural language processing

• Since 2020, virtually all English search queries on Google are processed with BERT

• GPT (Generative Pre-trained Transformer)

• OpenAI’s family of transformer-based models, proposed in 2018 (GPT-1)

• GPT-3: GPT-1 + modified normalization (GPT-2) + scaling, proposed 2020, 175G

parameters trained on 500G tokens

• GPT-4: undisclosed architecture, but estimated at 1.7T (1700G) parameters

• ChatGPT: integration of GPT-3.5 / GPT-4 and reinforcement learning with human

feedback (RLHF)
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Vision transformers (ViT)

• Vision transformers (ViT): adapting the transformer architecture to computer
vision

• Instead of processing word sequences, processes fixed size, non-overlapping image

patches

• Each patch is represented by a 1D vector, with positional information added to the

representation

• Patch representation provided as a sequence to the transformer network

• ViT characteristics

• Able to capture complex and distant relationships in images, without requiring

convolution layers

• Can achieve state-of-the-art performance with sufficient data and resources

• Requires very large datasets and intensive training to perform well
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Vision transformers (ViT)

Published as a conference paper at ICLR 2021

Transformer Encoder
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H, W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z0

0 = xclass), whose state at the output of the Transformer encoder (z0
L) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L. The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Taken from Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR, 2020. Accessed on-line on

November 2, 2023, at https://arxiv.org/pdf/2010.11929.pdf. 40
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Diffusion models

• Diffusion models: class of generative models simulating a random diffusion
process transforming a data instance into a noise instance

• Inspired by physics, with diffusion of particles from a medium of high concentration

to a low concentration one

• Used for image generation, denoising or inpainting

• Diffusion processes
• Forward diffusion: start with a clear image to which light noise is successively added

until the image is nothing but noise

• Reverse diffusion: start the process with an image of pure noise, on which successive

denoising operations are applied to obtain a clear image

• Each forward or reverse diffusion step guided by a transition function, typically

Gaussian, conditioned on the current state

• Once the reverse diffusion (denoising) mechanics have been learned, they can be

used to generate new images
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Forward diffusion process

14 

Forward Diffusion Process

The formal definition of the forward process in T steps:

Data Noise

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

(joint)

Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,

https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.
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Reverse diffusion process

19 

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Data Noise

Reverse denoising process (generative)

Trainable network
(U-net, Denoising Autoencoder)

x0 x1 x2 x3 x4 … xT

Taken from Song, Meng and Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 tutorial,

https://cvpr2023-tutorial-diffusion-models.github.io/, accessed on November 2, 2023.

43

https://cvpr2023-tutorial-diffusion-models.github.io/


Training diffusion models

• Forward diffusion: typically consists of applying Gaussian noise to pixels

• Repeated application of a small amount of Gaussian noise transforms the set of

pixels into random values having a Gaussian distribution

• Level of noise applied can vary in the sequence according to a schedule

• Reverse diffusion: neural network to remove noise

• Use forward diffusion data to train the denoising network

• Denoising network receives current noise level

• U-Net commonly used as denoising network

• Reverse diffusion process can be conditioned

• Specific class targeted

• Text query, using vector representation (lexical embedding or transformer network)
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Strengths and weaknesses of diffusion models

• Strengths of diffusion models

• Capable of generating high-quality data

• Flexible and can be adapted to different data types, works with complex data

distributions

• Weaknesses of diffusion models

• Generation process can be computationally heavy, with the many iterations required

in reverse diffusion.

• Training is computationally heavy

• These models form the basis of generative image models such as DALL-E

(OpenAI), Midjourney or Stable Diffusion.
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