# **Deep Learning**

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 8



# 8.1 Motivations for deep learning

#### History of neural networks

- 1957: proposal of the perceptron by Frank Rosenblatt
- 1967: demonstration by Marvin Minsky that the perceptron is unable of processing non-linearly separable data, disinterest in neural approaches
- 1986: Rumelhart, Hinton and Williams demonstrate the use of gradient backpropagation for the training of multilayer perceptrons
- 1995-2005: development of SVMs, loss of interest in neural networks
- 2006: first deep neural network architectures
- 2012: results for object (Toronto, ImageNet) and speech (Microsoft) recognition demonstrate the
  potential of deep learning as a disruptive technology
- 2014: explosion of private investment in machine learning, especially in deep learning
- 2018: ACM Turing Award ("Nobel" prize of computer science) to Bengio, Hinton and LeCun for their work on deep learning
- 2020-2022: large generative models for text (ChatGPT) and images (DALL-E, Midjourney)

### **Emergence of deep networks**

- Conditions that allowed the emergence of deep networks:
  - 1. Availability of very large datasets (big data)
  - 2. Availability of massive computing capacity (GPU)
  - New very flexible learning models, with priors that deal better with the curse of dimensionality

#### Representation learning

- Deep network motivation: learning a representation for weakly structured data
  - Weakly structured data: data whose information of interest is present in raw content, without being clearly identified (e.g., image, text, voice)
  - As opposed to tabular data, where each variable is clearly identified and has often been chosen according to the task of interest.
- Deep learning extracts a representation from the raw data that is adapted to the task in hand.
  - Avoids having to engineer a data representation by domain experts
  - However, requires a large amount of data to learn the representation from it

#### Model composition

- Model compositionality is necessary in machine learning
  - Such as for language, we need to compose elements to define a language that gives meaning to complex notions
- Exploiting compositionality allows an exponential gain in representation power
  - Distributed representations, feature learning
  - Deep architectures: several levels of representation learning
- Model composition is useful to describe our world effectively

## Local vs. distributed representation

• Set of distributed (not mutually exclusive) discriminants is exponentially more statistically efficient than local representations (k-nearest neighbours, clustering)



#### Network depth

- Deep networks, when well trained, learn better than fat networks
  - Network capacity grows linearly with the width of a layer, exponentially with the depth of the network



Figure 6.7 from I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. Accessed online on October 19, 2020 at https://www.deeplearningbook.org/contents/mlp.html.

Fat networks overfit with 20M parameters, deep networks work well with 60M parameters

# 8.2 Autoencoders

## **Unsupervised pre-training**

- Deep networks before 2011: unsupervised pre-training required
  - Random initialization of deep networks generates a wide variety of sub-optimal solutions (local minima)
  - Unsupervised pre-training allows to start the backpropagation in a good configuration (basin of attraction)



Figure 15.1 from I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. Accessed online on October 19, 2020 at https://www.deeplearningbook.org/contents/representation.html.

#### **Autoencoders**

- Autoencoder: model allowing to compress the input (encoder) and decompress it (decoder).
  - Objective: compress while keeping the error  $\|\mathbf{x} \hat{\mathbf{x}}\|^2$  low
  - Decoder weights linked to encoder weights (usually transposed)



#### **Autoencoders training**

- Unsupervised training of the autoencoder, to learn representation
  - Encoder used to extract a compact representation
- Greedy training, one layer at a time
  - Training of the outermost layer
  - Addition of a new layer, which is driven individually, with the outer layer being fixed, and so on
- Nonlinear transfer function between layers
  - Necessary, otherwise several linear layers could be simplified into a single layer
  - Weight learning by gradient descent
- Output layer added to the encoder, with supervised training
  - Complete backpropagation training of the output layer
  - Adjustment of encoder weights by backpropagation (fine-tuning)

# Autoencoder training example



- Unsupervised weight training W<sub>1</sub>, weight W<sub>1</sub><sup>T</sup> linked
- Minimize error  $\|\mathbf{x} \hat{\mathbf{x}}\|^2$
- Intermediate representation in central values (latent vector **z**)

#### **Autoencoder training example**



- Addition of two new layers (one in the encoder and one in the decoder)
- Unsupervised weight training W<sub>2</sub>, weight W<sub>1</sub> fixed
- Always minimizes error  $\|\mathbf{x} \hat{\mathbf{x}}\|^2$
- New intermediate representation
- Can be repeated like this on several layers

#### **Autoencoder training example**



- Removal of the decoder part of the network
- Adding an output layer, with as many outputs as classes
- Supervised training of W<sub>3</sub> by backpropagation
- Weights W<sub>1</sub> and W<sub>2</sub> also often fine-tuned by backpropagation

# 8.3 Elements of deep learning

## Deep learning without unsupervised pre-training

- Unsupervised pre-training of deep networks is generally no longer required
- Various techniques enable direct training of deep networks
  - New transfer functions (e.g., ReLU) alleviate gradient dilution problem
  - Better initialization of network weights (Xavier and He techniques)
  - Random weight deactivation with dropout, enabling better distribution of processing across the network
  - Batch normalization, to renormalize values between layers, enabling some learning invariances
  - Residual links, to distribute input information more directly to deeper layers

## Vanishing gradient problem

- Multilayer perceptron training of more than two hidden layers with backpropagation does not work well
  - Saturated neurons, with very low gradient
  - Vanishing gradient from layer to layer



#### **Transfer functions**

- Sigmoid function
  - Probabilistic interpretation
  - Approximation of a step function (binary)
  - Gradient saturation problem
- Transfer functions must include non-linearities
- ReLU function (Rectified Linear Unit),
   f<sub>ReLU</sub>(a) = max(0,a)
  - Simple transfer function model with nonlinearity
  - Composition of ReLUs allows piecewize linear approximations
  - Biological motivation of deep networks with ReLU (leaky integrate-and-fire model)
  - Training deep networks with ReLU possible without unsupervised pre-training





#### Deep network initialization

- Initial weight values have a significant effect on gradient values used for learning
  - ullet Initial weights too low  $\Rightarrow$  gradient implosion, learning stagnation
  - ullet Initial weights too high  $\Rightarrow$  gradient explosion, learning instability
  - Make the right trade-off for initializing weights, taking into account the transfer functions used
- Mathematical justification: example of an L-layer deep network with linear transfer function

$$y = \mathbf{W}_L \, \mathbf{W}_{L-1} \, \dots \, \mathbf{W}_2 \, \mathbf{W}_1 \, \mathbf{x}$$

- Suppose L-1 first layers identical and equal to  $\mathbf{W}$ ,  $y = \mathbf{W}_L(\mathbf{W})^{L-1}\mathbf{x}$
- With  $\mathbf{W}=c\,\mathbf{I}$  and c>1, explosion of output value,  $\lim_{L \to \infty} y = \infty$
- ullet With c<1, implosion of output value,  $\lim_{L o\infty}y=0$

#### Initialization methods

- Xavier's method
  - Adapted with sigmoid transfer function and tanh.
  - Consists of uniform random values in  $\left[-\sqrt{\frac{6}{n_{\rm in}+n_{\rm out}}},\sqrt{\frac{6}{n_{\rm in}+n_{\rm out}}}\right]$ , where  $n_{\rm in}$  is the number of inputs and  $n_{\rm out}$  is the number of outputs of the neuron associated with the generated weight

$$w_{j,i} \sim \mathcal{U}\left(-\sqrt{\frac{6}{n_{\mathrm{in}} + n_{\mathrm{out}}}}, \sqrt{\frac{6}{n_{\mathrm{in}} + n_{\mathrm{out}}}}\right)$$

- He's method
  - For asymmetrical transfer functions such as ReLU, He's method is preferable
  - Initializes according to a Gaussian distribution that depends on the number of neuron inputs

$$w_{j,i} \sim \mathcal{N}\left(0, \frac{2}{n_{\mathrm{in}}}\right)$$

#### **Dropout**

- Dropout: training method that consists in randomly deactivating neurons
  - $\bullet$  Typically, half of the neurons in the hidden layers (80 % of the inputs) are activated at the presentation of each data during training
  - Random masks to select active neurons, a different one for each presentation
- Does a regularization of the network
  - Forces the learning of a representation distributed throughout the network
  - Makes it difficult for "grandmother cells" to emerge
  - Has proven to be very effective in improving the performance of deep networks
- Evaluation of new data at test time by averaging over several selection masks
  - Analogy with ensemble learning (seen later in the semester), in particular to bagging

# Dropout



#### **Batch normalization**

- Modification of a weight by backpropagation based on a local gradient
  - Weight of previous and following layers are also modified!
- Batch normalization: normalize activation of neurons between all the data of a mini-batch
  - Mini-batch: small subset of data instances from the training set (typically a few hundreds)
- Activation of neurons H normalized according to

$$\mathbf{H}' = rac{\mathbf{H} - oldsymbol{\mu}}{oldsymbol{\sigma}}, \quad oldsymbol{\mu} = rac{1}{m} \sum_i \mathbf{H}_{i,:}, \quad oldsymbol{\sigma} = \sqrt{\epsilon + \sum_i (\mathbf{H} - oldsymbol{\mu})_i^2}$$

- H: activation of neurons (row) of a layer for the data of the mini-batch (column)
- $\epsilon$ : small value (typically  $10^{-8}$ ) to avoid division by zero when variance is zero

#### Residual links

• Residual links: allow direct connections between non-adjacent layers (skip links)



From K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020 at https://arxiv.org/abs/1512.03385.

- Enables much deeper and more powerful networks (ResNets)
  - ResNets: winners of ImageNet 2015 competition (3.57 % error top 5)
  - Facilitates signal optimization and propagation across the network
  - Residual block must do some processing to improve the output of the previous block, otherwise the current block may be ignored.

# 8.4 Learning from unstructured

data

#### **Learning from unstructured data**

- Classical neural network models process fixed-size vectors
  - Assumes data are represented on a predefined number of variables
- Tabular data
  - Structured data, with a reasonable number of known variables
  - Directly usable by neural networks (e.g. MLP) and other models
- Images
  - Matrix of numbers, with each pixel represented by three real values (RGB)
  - Unstructured data, large number of variables (millions of pixels per image) and little significance of individual pixels
  - High locality of pixels in images, suitable operators (e.g. convolution) can take advantage of this
- Text
  - Collection of words forming sentences, variable-length sequences
  - $\bullet$  Extensive vocabulary ( $\sim$  100 000 words in French), with synonyms, homonyms, related words

## Representation learning

• Classic pattern recognition pipeline



- In the past, each module was designed independently
- Deep learning allows learning of the representations
  - Learning of all modules simultaneously
  - Ability to retrieve representations (segmentation, feature extraction) and use them with other classification and decision-making modules

#### Convolution network

- Convolution network: processing temporal or spatial signals
  - Time signal: sound and speech
  - Spatial signal: image
- Convolution layer: filters convoluted on temporal/spatial data
  - Data can be network input values or outputs from previous layers
  - Convolution on each channel (multiple channels is possible)
  - Learning the filters by backpropagation
- Pooling layer: value selection (maximum of a window)
  - Allows to reduce the size of the values, otherwise the size of the model explodes!
- Fully connected neurons output for decision-making
- Presented in detail in the next module

#### Convolution network



#### **Filters composition**



From G. Hinton, Y. Bengio and Y. LeCun, Deep Learning NIPS'15 Tutorial, 2015. Accessed online on October 19, 2020 at https://media.nips.cc/Conferences/2015/tutorialslides/DL-Tutorial-NIPS2015.pdf.

## **Objects recognition**

• ImageNet Large Scale Visual Recognition Challenge: recognize objects in an image (1000 classes), giving the right class in a top 5

| ILSVRC 2012           |         | ILSVRC 2013         |         | ILSVRC 2014  |         |
|-----------------------|---------|---------------------|---------|--------------|---------|
| Team                  | % error | Team                | % error | Team         | % error |
| SuperVision (Toronto) | 15.3    | Clarifai            | 11.7    | GoogLeNet    | 6.6     |
| ISI (Tokyo)           | 26.1    | NUS                 | 12.9    | VGG (Oxford) | 7.3     |
| VGG (Oxford)          | 26.9    | Zeiler-Fergus (NYU) | 13.5    | MSRA         | 8.0     |
| XRCE / INRIA          | 27.0    | A. Howard           | 13.5    | A. Howard    | 8.1     |
| UvA (Amsterdam)       | 29.6    | OverFeat (NYU)      | 14.1    | DeeperVision | 9.5     |
| INRIA / LEAR          | 33.4    | UvA (Amsterdam)     | 14.2    | NUS-BST      | 9.7     |
|                       |         | Adobe               | 15.2    | TTIC-ECP     | 10.2    |
|                       |         | VGG (Oxford)        | 15.2    | XYZ          | 11.2    |
|                       |         | VGG (Oxford)        | 23.0    | UvA          | 12.1    |

#### Text processing

- How to give documents (sequence of strings) to a neural network (vector of fixed-size real values)?
- Bag-of-Words model (BoW)
  - Identify a dictionary of the most frequent / interesting words
  - Calculate the frequency of each word for each processed document (vector of integers of fixed size)

$$\mathbf{x}^t = [x_1^t, x_2^t, \dots, x_{\nu}^t]^{\top}$$

where  $x_i^t$  is the number of occurrences (integer value) of the i-th word (according to the dictionary) in the document

- Does not take into account order of the words
  - Models with N-gram: measures the frequency of adjacent word groups
  - Skip-gram: related words may not be adjacent

### Word embedding

- Word embedding: projection of words into a vector space capturing semantic relations.
  - Words close together in the vector space have a similar or related meaning
  - Postulate that algebraic operations in this space respect a semantic logic.



- Construction of word embeddings generally done by unsupervised or self-supervised learning approaches
- Induced space is interesting for performing processing
  - For example, input of a neural network for document classification

## **Constructing word embeddings**

- Idea: predict words in a sequence to encode text
  - Continuous BoW: predict the word according to those preceding and following (faster)
  - Continuous skip-gram: predict preceding and following words according to the word of interest (more accurate)





Continuous skip-gr

- word2vec: use Continuous BoW or Continuous skip-gram to build embeddings
  - MLP network, two hidden layers, embedding of a few hundred dimensions

# 8.5 Representation transfer and

adaptation

## Transfer of representations

- Learning a deep network on task A
- New task B, based on data similar to task A
  - Retrieve task A representation
  - Train new classifier for task B



- Allows a transfer of representation (transfer learning)
- Fine-tuning of the representation on the new task possible
- Standard approach to learning object recognition model, using representation created with ImageNet

## Multitask learning

- Multitask learning: simultaneously learning a representation for separate operations
  - Two-headed network, one for each task



- Backpropagation comes from one head at a time
- Mixing data and tasks during learning
- Good performance for producing representations capturing general concepts

## **Few-shot learning**

- How to learn with few data of each class?
  - General problem: learning to learn (meta-learning)
- Model with N classes of K instances each (N-way-K-shot)



- $\bullet$  Support set: K instances for each of the N classes to be processed
- Query set: new instances to process
- Classes of support and query sets vary at each attempt
  - Learning models designed to work with classes unknown beforehand

## Few-shot learning: prototypical network

- Prototypical network
  - Summarize the support of a class by an average value (prototype)
  - Classify queries according to the nearest prototype



## Domain adaptation

- Domain adaptation: use one or more source domains to better process the target domain
  - Model inputs and outputs are the same for all domains
  - Special case of transfer learning, where inputs/outputs may change in the general case.
- Domain Adversarial Neural Network (DANN)
  - Learning for multiple source domains, based on a multitasking learning model
  - One head associated to the classification task
  - A second head aims to discriminate between source domains in the shared part output
  - Learning the additional head involves a gradient reversal to force a common, general intermediate representation.

## Domain adversarial neural network (DANN)



# 8.6 Adversarial approaches

#### Adversarial data

 Use data generation to determine the smallest variation that would lead to a misclassification



 $\begin{array}{ll} \text{Meerkat} & \epsilon = 0.005 & \text{School bus} \\ \text{Conf.: 65.3\%} & & \text{Conf.: 98.6\%} \end{array}$ 

- Caused by the use of distributed representation in a very high dimensionality space
- Illustrates a current difficulty with deep networks, robustness to adversary data needs to be improved

#### Attacks and defences

- Typical attacks: gradient descent on the data to deceive the network
  - Fast gradient sign method (FGSM):

$$\mathbf{x} = \mathbf{x} + \epsilon \operatorname{sign} \frac{\partial L(\mathbf{x}, y | \theta)}{\partial \mathbf{x}}$$

- Several other variants proposed to produce adversarial data
- Defence mechanism: adversarial training
  - Augment the training set with adversarial data to make the network robust

## Generative Adversarial Networks (GAN)

- GAN model: putting in competition two neural networks
  - Discriminative network: distinguishing true data from the problem from generated data
  - Generative network: producing data that looks authentic
  - Allows various treatments based on unsupervised learning
- Example: image-to-image translation with conditional GANs



From Isola, Zhu, Zhou and Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017. Accessed online on October 19, 2020 at https://arxiv.org/pdf/1611.07004v3.pdf.

## Generative Adversarial Networks (GAN)



# 8.7 Software implementation

### **Automatic gradient**

- Computational graph: representing the mathematical operations of a network in a graph
  - Captures the order and nature of operations
- Automatic gradient: calculate analytical gradients on the whole network automatically, via computational graphs
- Allows to define complex and heterogeneous network topologies without having to do the analytical derivatives manually!
- Also allows to optimize the processing on the targeted architecture (e.g. GPU)

### **Automatic gradient**

Backward propagation

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial}{\partial x_1} \left( \sin(x_1) + x_1 x_2 \right) = \cos(x_1) + x_2$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = \frac{\partial}{\partial x_2} \left( \sin(x_1) + x_1 x_2 \right) = x_1$$



## **Tools for deep learning (open source)**

- TensorFlow: https://www.tensorflow.org/
  - Code in C++, with a user interface in Python
  - Entirely organized around computational graphs
- PyTorch: https://pytorch.org/
  - Offers user-friendly programming interface in Python, programmatic approach.
  - Automatic differentiation done dynamically, more versatile than TensorFlow in some respects.
- Google JAX: https://jax.readthedocs.io/
  - Combines automatic gradient and high-performance numerical calculation in a standard interface (à la NumPy)
  - Not specifically designed for deep learning, but offers great flexibility
- Keras: https://keras.io/
  - User-friendly interface for deep learning, at the cost of reduced flexibility
  - On top of TensorFlow, PyTorch or JAX as underlying deep learning environment

#### References

- Yann LeCun, Yoshua Bengio and Geoffrey Hinton. *Deep learning*. Nature, vol. 521, pages 436–444, 2015. https://doi.org/10.1038/nature14539
- lan Goodfellow, Yoshua Bengio and Aaron Courville. "Deep Learning", MIT Press, 2016. http://www.deeplearningbook.org/
- Geoffrey Hinton, Yoshua Bengio and Yann LeCun, *Deep Learning NIPS'15 Tutorial*, 2015. https://nips.cc/Conferences/2015/Schedule?showEvent=4891