Deep Learning

Introduction to Machine Learning — GIF-7015
Professor: Christian Gagné

Week 8

UNIVERSITE

LAVAL

8.1 Motivations for deep learning

History of neural networks

e 1957: proposal of the perceptron by Frank Rosenblatt

e 1967: demonstration by Marvin Minsky that the perceptron is unable of processing non-linearly
separable data, disinterest in neural approaches

e 1986: Rumelhart, Hinton and Williams demonstrate the use of gradient backpropagation for the
training of multilayer perceptrons

e 1995-2005: development of SVMs, loss of interest in neural networks
e 2006: first deep neural network architectures

e 2012: results for object (Toronto, ImageNet) and speech (Microsoft) recognition demonstrate the
potential of deep learning as a disruptive technology

e 2014: explosion of private investment in machine learning, especially in deep learning

e 2018: ACM Turing Award (“Nobel” prize of computer science) to Bengio, Hinton and LeCun for
their work on deep learning

e 2020-2022: large generative models for text (ChatGPT) and images (DALL-E, Midjourney)

Emergence of deep networks

e Conditions that allowed the emergence of deep networks:
1. Availability of very large datasets (big data)
2. Availability of massive computing capacity (GPU)
3. New very flexible learning models, with priors that deal better with the curse of
dimensionality

Representation learning

e Deep network motivation: learning a representation for weakly structured data
e Weakly structured data: data whose information of interest is present in raw
content, without being clearly identified (e.g., image, text, voice)
e As opposed to tabular data, where each variable is clearly identified and has often
been chosen according to the task of interest.

e Deep learning extracts a representation from the raw data that is adapted to the
task in hand.
e Avoids having to engineer a data representation by domain experts
e However, requires a large amount of data to learn the representation from it

Model composition

e Model compositionality is necessary in machine learning

e Such as for language, we need to compose elements to define a language that gives
meaning to complex notions

e Exploiting compositionality allows an exponential gain in representation power
e Distributed representations, feature learning
e Deep architectures: several levels of representation learning

e Model composition is useful to describe our world effectively

Local vs. distributed representation

e Set of distributed (not mutually exclusive) discriminants is exponentially more

statistically efficient than local representations (k-nearest neighbours, clustering)

Local representation

hy

(hy > 0) A
(hy > 0) A
(b > 0)

(by > 0) A
(hy < 0) A

(hy < 0) A (hs > 0)

(ha>0) A

(hy > 0)

(hy >0) A
(hy < 0)
(b3 < 0)
(1 <0) A (b <0) A
(hy > 0) A (hz <0) A
(hy < 0)

(hy < 0)

Distributed representation

Network depth

e Deep networks, when well trained, learn better than fat networks
e Network capacity grows linearly with the width of a layer, exponentially with the
depth of the network

07 T T 1 1
= 96 e—e 3, convolutional
g) +—+ 3, fully connected
g
§./ 95 - V¥ 11, convolutional [
g ooaf i
g
g o3l +\+—/—+ i
<
E 92 m
91 L L L L !
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x10%

Figure 6.7 from I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. Accessed online on October 19, 2020 at
https://www.deeplearningbook.org/contents/mlp.html.

e Fat networks overfit with 20M parameters, deep networks work well with 60M
parameters

https://www.deeplearningbook.org/contents/mlp.html

8.2 Autoencoders

Unsupervised pre-training

e Deep networks before 2011: unsupervised pre-training required
e Random initialization of deep networks generates a wide variety of sub-optimal
solutions (local minima)
e Unsupervised pre-training allows to start the backpropagation in a good
configuration (basin of attraction)

1500 T T 1 ! ! ! !
vV¥y With pretraining
1000 . . H
009 Without pretraining
500 .
0 w .
—500 .
—1000f .
—1500 | I Il | 1 | |

—4000 —3000 —2000 —1000 0 1000 2000 3000 4000

Figure 15.1 from . Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. Accessed online on October 19, 2020
at https://www.deeplearningbook.org/contents/representation.html. 7

https://www.deeplearningbook.org/contents/representation.html

Autoencoders

e Autoencoder: model allowing to compress the input (encoder) and decompress it
(decoder).
e Objective: compress while keeping the error ||x — &||? low
e Decoder weights linked to encoder weights (usually transposed)

z

[OO0OOO]s

[OO0 OOQ
(OO 0000 »

Autoencoders training

e Unsupervised training of the autoencoder, to learn representation
e Encoder used to extract a compact representation
e Greedy training, one layer at a time
e Training of the outermost layer
e Addition of a new layer, which is driven individually, with the outer layer being fixed,
and so on
e Nonlinear transfer function between layers
e Necessary, otherwise several linear layers could be simplified into a single layer
e Weight learning by gradient descent
e Qutput layer added to the encoder, with supervised training

e Complete backpropagation training of the output layer
e Adjustment of encoder weights by backpropagation (fine-tuning)

Autoencoder training example

e Unsupervised weight training W1,
weight W/ linked

e Minimize error |x — %||?

e Intermediate representation in central
values (latent vector z)

(00000 s

(OO0 O0O0 I+
(OO0O0OOO|»

10

Autoencoder training example

e Addition of two new layers (one in the

encoder and one in the decoder)

e Unsupervised weight training Wo,
weight W1 fixed

e Always minimizes error [|x — %||?

W, W, W,

(OO0]~

e New intermediate representation

[elelelele)

e Can be repeated like this on several

(OO0 OOO =
(OO OOOO =

,,,,,,,,,,,,,,,,,,,,,,,,,, layers

11

Autoencoder training example

e Removal of the decoder part of the
network

e Adding an output layer, with as many
outputs as classes

e Supervised training of W3 by
backpropagation

o Weights W7 and W, also often
fine-tuned by backpropagation

12

8.3 Elements of deep learning

Deep learning without unsupervised pre-training

e Unsupervised pre-training of deep networks is generally no longer required

e Various techniques enable direct training of deep networks

New transfer functions (e.g., ReLU) alleviate gradient dilution problem

Better initialization of network weights (Xavier and He techniques)

Random weight deactivation with dropout, enabling better distribution of processing
across the network

Batch normalization, to renormalize values between layers, enabling some learning
invariances

Residual links, to distribute input information more directly to deeper layers

13

Vanishing gradient problem

e Multilayer perceptron training of more than two hidden layers with
backpropagation does not work well
e Saturated neurons, with very low gradient
e Vanishing gradient from layer to layer

st
5t

14

Transfer functions

e Sigmoid function

Probabilistic interpretation
Approximation of a step function (binary)
Gradient saturation problem

e Transfer functions must include non-linearities

e RelU function (Rectified Linear Unit),
fReLu(a) = max(O,a)

Simple transfer function model with nonlinearity
Composition of ReLUs allows piecewize linear
approximations

Biological motivation of deep networks with ReLU (leaky
integrate-and-fire model)

Training deep networks with ReLU possible without
unsupervised pre-training

e

15

Deep network initialization

e Initial weight values have a significant effect on gradient values used for learning
e Initial weights too low = gradient implosion, learning stagnation
e Initial weights too high = gradient explosion, learning instability
e Make the right trade-off for initializing weights, taking into account the transfer
functions used
e Mathematical justification: example of an L-layer deep network with linear
transfer function
y :WLWL,1 W2W1X

e Suppose L — 1 first layers identical and equal to W, y = W, (W)t—1x
e With W = cl and ¢ > 1, explosion of output value, Llim Yy =00
— 00

e With ¢ < 1, implosion of output value, lim y =0
L—oo

16

Initialization methods

e Xavier's method

e Adapted with sigmoid transfer function and tanh.

e Consists of uniform random values in [—\/ 6 \/ 6

Nin+nout ’ Nin+Nout
number of inputs and nyyt is the number of outputs of the neuron associated with

6 6
Wj.i ~ u (\/) \/)
Nin + Nout Nin + Nout
e He's method

e For asymmetrical transfer functions such as ReLU, He's method is preferable

J, where n;, is the

the generated weight

e |Initializes according to a Gaussian distribution that depends on the number of

2
Wj,i ~ N (07)
Nin

neuron inputs

17

e Dropout: training method that consists in randomly deactivating neurons

e Typically, half of the neurons in the hidden layers (80 % of the inputs) are activated
at the presentation of each data during training
e Random masks to select active neurons, a different one for each presentation

e Does a regularization of the network

e Forces the learning of a representation distributed throughout the network
e Makes it difficult for “grandmother cells” to emerge
e Has proven to be very effective in improving the performance of deep networks

e Evaluation of new data at test time by averaging over several selection masks

e Analogy with ensemble learning (seen later in the semester), in particular to bagging

18

19

Batch normalization

e Modification of a weight by backpropagation based on a local gradient
e Weight of previous and following layers are also modified!
e Batch normalization: normalize activation of neurons between all the data of a
mini-batch
e Mini-batch: small subset of data instances from the training set (typically a few

hundreds)

e Activation of neurons H normalized according to

H/:H*H7 H:;ZH"*’ o':\/6+Z(H—;L)12

o

e H: activation of neurons (row) of a layer for the data of the mini-batch (column)
e ¢ small value (typically 1078) to avoid division by zero when variance is zero

20

Residual links

e Residual links: allow direct connections between non-adjacent layers (skip links)

weight layer

X
identity

From K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CVPR, 2016. Accessed online November 6, 2020
at https://arxiv.org/abs/1512.03385.

e Enables much deeper and more powerful networks (ResNets)
e ResNets: winners of ImageNet 2015 competition (3.57 % error top 5)
e Facilitates signal optimization and propagation across the network
e Residual block must do some processing to improve the output of the previous block,
otherwise the current block may be ignored.

21

https://arxiv.org/abs/1512.03385

8.4 Learning from unstructured
data

Learning from unstructured data

e Classical neural network models process fixed-size vectors
e Assumes data are represented on a predefined number of variables
e Tabular data
e Structured data, with a reasonable number of known variables
e Directly usable by neural networks (e.g. MLP) and other models
e Images
e Matrix of numbers, with each pixel represented by three real values (RGB)
e Unstructured data, large number of variables (millions of pixels per image) and little
significance of individual pixels
e High locality of pixels in images, suitable operators (e.g. convolution) can take
advantage of this
e Text
e Collection of words forming sentences, variable-length sequences
e Extensive vocabulary (~ 100000 words in French), with synonyms, homonyms,

related words ”

Representation learning

e Classic pattern recognition pipeline

Feature Classification / Decision /

Segmentation . . L
extraction regression combining

e In the past, each module was designed independently
e Deep learning allows learning of the representations

e Learning of all modules simultaneously
e Ability to retrieve representations (segmentation, feature extraction) and use them
with other classification and decision-making modules

23

Convolution network

e Convolution network: processing temporal or spatial signals

e Time signal: sound and speech
e Spatial signal: image

Convolution layer: filters convoluted on temporal/spatial data
e Data can be network input values or outputs from previous layers
e Convolution on each channel (multiple channels is possible)
e Learning the filters by backpropagation

Pooling layer: value selection (maximum of a window)

e Allows to reduce the size of the values, otherwise the size of the model explodes!

Fully connected neurons output for decision-making

Presented in detail in the next module

24

nvolution network

Polling
Convolutions

5 classes

4 Polling

Convolutions

Polling ~ Convolutions Fully connected

Convolutions

25

Filters composition

Low-Level| |Mid-Level| |High-Level Trainable
—> — —|
Feature Feature Feature Classifier

From G. Hinton, Y. Bengio and Y. LeCun, Deep Learning NIPS'15 Tutorial, 2015. Accessed online on October 19, 2020 at
https://media.nips.cc/Conferences/2015/tutorialslides/DL-Tutorial-NIPS2015.pdf.

26

https://media.nips.cc/Conferences/2015/tutorialslides/DL-Tutorial-NIPS2015.pdf

Objects recognition

e ImagelNet Large Scale Visual Recognition Challenge: recognize objects in an
image (1000 classes), giving the right class in a top 5

ILSVRC 2012 ILSVRC 2013 ILSVRC 2014

Team % error Team % error Team % error
SuperVision (Toronto) 15.3 Clarifai 11.7 GoogleNet 6.6
ISI (Tokyo) 26.1 NUS 129 VGG (Oxford) 7.3
VGG (Oxford) 26.9 Zeiler-Fergus (NYU) 135 MSRA 8.0
XRCE / INRIA 27.0 A. Howard 13,5 A. Howard 8.1
UvA (Amsterdam) 29.6 OverFeat (NYU) 141 DeeperVision 9.5
INRIA / LEAR 334 UvA (Amsterdam) 142 NUS-BST 9.7

Adobe 15.2 TTIC-ECP 10.2

VGG (Oxford) 152 XYZ 11.2

VGG (Oxford) 23.0 UvA 12.1

27

Text processing

e How to give documents (sequence of strings) to a neural network (vector of
fixed-size real values)?
e Bag-of-Words model (BoW)
e |dentify a dictionary of the most frequent / interesting words
e Calculate the frequency of each word for each processed document (vector of
integers of fixed size)
xt=[xfxd, . X T
where x} is the number of occurrences (integer value) of the i—th word (according
to the dictionary) in the document
e Does not take into account order of the words
e Models with N-gram: measures the frequency of adjacent word groups
e Skip-gram: related words may not be adjacent

28

Word embedding

e Word embedding: projection of words into a vector space capturing semantic
relations.
e Words close together in the vector space have a similar or related meaning
e Postulate that algebraic operations in this space respect a semantic logic.

king

e

man .
e N
®
RN queen
[
woman

e Construction of word embeddings generally done by unsupervised or
self-supervised learning approaches
e Induced space is interesting for performing processing
e For example, input of a neural network for document classification 29

Constructing word embeddings

e |dea: predict words in a sequence to encode text
e Continuous BoW: predict the word according to those preceding and following
(faster)

e Continuous skip-gram: predict preceding and following words according to the word
of interest (more accurate)

Continuous BoW
Continuous skip-gram

e word2vec: use Continuous BoW or Continuous skip-gram to build embeddings

e MLP network, two hidden layers, embedding of a few hundred dimensions 30

8.5 Representation transfer and
adaptation

Transfer of representations

e Learning a deep network on task A

e New task B, based on data similar to task A
e Retrieve task A representation
e Train new classifier for task B

Task A classifier | %» | Task B classifier

Representation\ ——» /Representation

e Allows a transfer of representation (transfer learning)
e Fine-tuning of the representation on the new task possible

e Standard approach to learning object recognition model, using representation

created with ImageNet
31

Multitask learning

e Multitask learning: simultaneously learning a representation for separate
operations

e Two-headed network, one for each task

Task A classifier | | Task B classifier |

Representation

e Backpropagation comes from one head at a time
e Mixing data and tasks during learning
e Good performance for producing representations capturing general concepts

32

Few-shot learning

e How to learn with few data of each class?
e General problem: learning to learn (meta-learning)

e Model with N classes of K instances each (N-way-K-shot)
Support set (N=3, K=2)

e Support set: K instances for each of the N classes to be processed
° Query set: new instances to process
e Classes of support and query sets vary at each attempt
e Learning models designed to work with classes unknown beforehand 33

Few-shot learning: prototypical network

e Prototypical network
e Summarize the support of a class by an average value (prototype)

o

.m2

o

e Classify queries according to the nearest prototype

.
.

34

Domain adaptation

e Domain adaptation: use one or more source domains to better process the target
domain
e Model inputs and outputs are the same for all domains
e Special case of transfer learning, where inputs/outputs may change in the general
case.

e Domain Adversarial Neural Network (DANN)

Learning for multiple source domains, based on a multitasking learning model

One head associated to the classification task

A second head aims to discriminate between source domains in the shared part
output

e Learning the additional head involves a gradient reversal to force a common, general
intermediate representation.

35

Domain adversarial neural network (DANN)

0L, |4 B
oLy / 09, y
P S)
005
Class
@) predictor Class label y
Feature O

x extractor

Domain

A= - Gradient I

reversal

Domain label d

oLy

00 |

36

8.6 Adversarial approaches

Adversarial data

e Use data generation to determine the smallest variation that would lead to a
misclassification

Meerkat e = 0.005 School bus
Conf.: 65.3% Conf.: 98.6%

e Caused by the use of distributed representation in a very high dimensionality space

e |llustrates a current difficulty with deep networks, robustness to adversary data
needs to be improved

37

Attacks and defences

e Typical attacks: gradient descent on the data to deceive the network
e Fast gradient sign method (FGSM):

dL(x,y|0)
ox

e Several other variants proposed to produce adversarial data

X = X + esign

e Defence mechanism: adversarial training

e Augment the training set with adversarial data to make the network robust

38

Generative Adversarial Networks (GAN)

e GAN model: putting in competition two neural networks
e Discriminative network: distinguishing true data from the problem from generated
data
e Generative network: producing data that looks authentic
e Allows various treatments based on unsupervised learning

e Example: image-to-image translation with conditional GANs

Labels to Street Scene Labels to Facade BW to Color

ut
Day to Night Edges to Photo

will &
_a)

output input output input output

From Isola, Zhu, Zhou and Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017. Accessed online on
October 19, 2020 at https://arxiv.org/pdf/1611.07004v3. pdf. 39

https://arxiv.org/pdf/1611.07004v3.pdf

Generative Adversarial Networks (GAN)

Dataset Real data
\ Discriminative e ———
network Real or fake data?
Generative Generated data OLy4 - Ld
network 904
0a
0L4

—8709

40

8.7 Software implementation

Automatic gradient

e Computational graph: representing the mathematical operations of a network in a
graph
e Captures the order and nature of operations

e Automatic gradient: calculate analytical gradients on the whole network

automatically, via computational graphs

e Allows to define complex and heterogeneous network topologies without having to

do the analytical derivatives manually!

e Also allows to optimize the processing on the targeted architecture (e.g. GPU)

41

Automatic gradient

Of (x1,x: o .
% = o (sin(x1) + x1 x2) = cos(x1) + x>
1 1
Of (x1,x o .
% = (sin(x1) + x1 x2) = x1
2 2
<
.2
F=RTY
59
52
s ng Wg = Ws
- B
g2
S
8 2
@ o W = wycos(wy)
i

42

By Berland, public domain, https://en.wikipedia.org/wiki/File:ReverseaccumulationAD.png

https://en.wikipedia.org/wiki/File:ReverseaccumulationAD.png

Tools for deep learning (open source)

e TensorFlow: https://www.tensorflow.org/
e Code in C4++, with a user interface in Python
e Entirely organized around computational graphs
e PyTorch: https://pytorch.org/
e Offers user-friendly programming interface in Python, programmatic approach.
e Automatic differentiation done dynamically, more versatile than TensorFlow in some
respects.
e Google JAX: https://jax.readthedocs.io/
e Combines automatic gradient and high-performance numerical calculation in a
standard interface (a la NumPy)
e Not specifically designed for deep learning, but offers great flexibility
e Keras: https://keras.io/
e User-friendly interface for deep learning, at the cost of reduced flexibility
e On top of TensorFlow, PyTorch or JAX as underlying deep learning environment

43

https://www.tensorflow.org/
https://pytorch.org/
https://jax.readthedocs.io/
https://keras.io/

References

[Yann LeCun, Yoshua Bengio and Geoffrey Hinton. Deep learning. Nature, vol. 521,
pages 436—444, 2015. https://doi.org/10.1038/nature14539

[4 lan Goodfellow, Yoshua Bengio and Aaron Courville. “Deep Learning”, MIT Press,
2016. http://www.deeplearningbook.org/

[4 Geoffrey Hinton, Yoshua Bengio and Yann LeCun, Deep Learning NIPS'15 Tutorial,
2015. https://nips.cc/Conferences/2015/Schedule?showEvent=4891

a4

https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org/
https://nips.cc/Conferences/2015/Schedule?showEvent=4891

	8.1 Motivations for deep learning
	8.2 Autoencoders
	8.3 Elements of deep learning
	8.4 Learning from unstructured data
	8.5 Representation transfer and adaptation
	8.6 Adversarial approaches
	8.7 Software implementation

