Nonparametric Methods

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 4

4.1 Histogram estimation

Nonparametric methods

- Parametric methods (including mixture models)
 - ullet Probability densities $(p(\mathbf{x}))$ selected in advance (typically, $\mathbf{x} \sim \mathcal{N}_D(oldsymbol{\mu}, oldsymbol{\Sigma}))$
 - Search for the parameterization of these densities
- Nonparametric methods
 - Estimate the probability density directly from the data
 - No hypothesis a priori on the distribution of data
- Main approaches
 - Histogram estimation
 - Kernel density estimation
 - *k*-nearest neighbours (*k*-NN)

Nonparametric density estimation

- ullet Probability that value x is less than or equal to a
 - $P(x \le a) = \int_{x=-\infty}^{a} p(x) dx$
 - Estimation by sampling $\{x^t\}_{t=1}^N$: $\hat{P}(x \le a) = \frac{\#\{x^t \le a\}}{N}$
- Estimated value x in the range [a, a + h]

$$\hat{P}(a \le x \le (a+h)) = \frac{\#\{x^t \le (a+h)\} - \#\{x^t \le a\}}{N}$$

• Approximation of density p(x) in [a,a+h] by constant value $\hat{p}(x|x \in [a,(a+h)]) \approx \hat{p}(a)$

$$\hat{P}(a \le x \le (a+h)) = \int_{x=a}^{a+h} \hat{p}(x) \ dx \approx \hat{p}(a)(a+h-a) = h\hat{p}(a)$$

$$\hat{p}(x|x \in [a,(a+h)]) \approx \frac{1}{h} \left[\frac{\#\{x^t \le (a+h)\} - \#\{x^t \le a\}}{N} \right]$$

Histogram estimation

- Histogram estimation (1D)
 - Divide the input space into compartments of equal size (bins)
 - Each bin is h wide and positioned with respect to an origin x_0

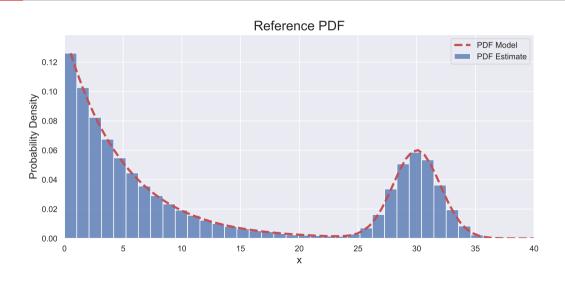
$$]x_0 + mh, x_0 + (m+1)h]$$
, with m n natural number

• Estimation in 1D, from a set $\{x^t\}_{t=1}^N$

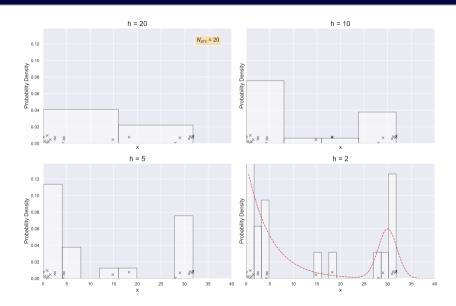
$$\hat{p}(x) = \frac{\#\{x^t \text{ in the same bin than } x\}}{Nh}$$

- Choice of origin x_0 may slightly affect the estimator (boundary discontinuities)
- Choice of width h significantly affects the estimator
 - If the value of h is low, many peaks in the estimate
 - If the value of h is high, softer (less accurate) estimate

Histogram density estimation



Histogram density estimation



Estimation in many dimensions

- Histogram estimation in many dimensions
 - Bins corresponding to equal hypervolume hypercubes
 - Highly impacted by the curse of dimensionality
- General conditions for estimates to converge to the true probability density,

$$\hat{p}(\mathbf{x})
ightarrow p(\mathbf{x})$$

• Volume V_n of each bin reduced

$$\lim_{n\to\infty}V_n=0$$

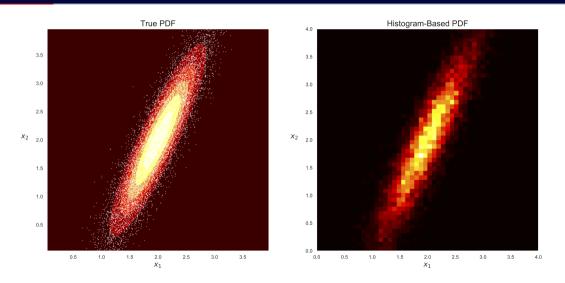
• Number of observations k_n per bin is very high

$$\lim_{n\to\infty}k_n=\infty$$

• Ratio of the number of observations per bin to total number of observations is high

$$\lim_{n\to\infty}\frac{k_n}{n}=0$$

2D density estimations



Naive histogram density estimation

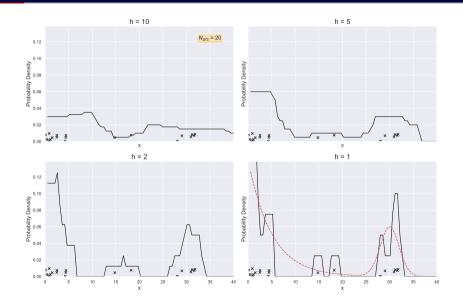
- Naive histogram estimator (also known as a Parzen window)
 - Estimate the density around x in a hypercube of width 2h
 - Formulation in 1D

$$\hat{p}(x) = \frac{\#\{(x-h) < x^t \le (x+h)\}}{2Nh}$$

$$= \frac{1}{2Nh} \sum_{t=1}^{N} w\left(\frac{x-x^t}{h}\right)$$
where $w(u) = \begin{cases} 1 & \text{if } |u| < 1\\ 0 & \text{otherwise} \end{cases}$

- Removes the origin x_0
- The estimation is not continuous and has steps at $x^t \pm h$

Naive histogram density estimation



4.2 Kernel density estimation

Kernel density estimation

- Kernel density estimation: softer estimation than the naive histogram estimator
 - Use a softening kernel, typically a Gaussian kernel

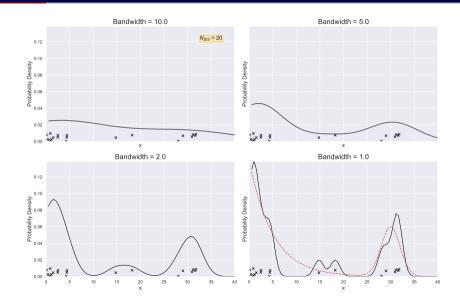
$$K(u) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{u^2}{2}\right]$$

• Convolution of the softening kernel with data $\{x^t\}_{t=1}^N$

$$\hat{\rho}(x) = \frac{1}{Nh} \sum_{t=1}^{N} K\left(\frac{x - x^{t}}{h}\right)$$

- Kernel $K(\cdot)$ determines the shape of influence of the data
- Window width h determines the width of the data influence
- Generalizes the naive estimation, which uses a rectangular box as a kernel

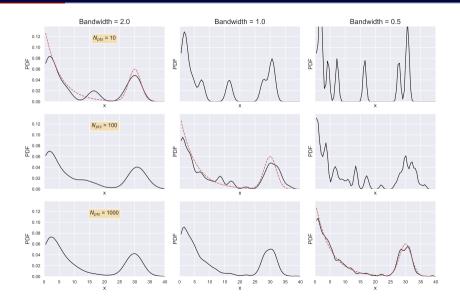
Kernel density estimation



Quality of the kernel density estimate

- Window width greatly influences the estimate
 - h small: each data has an important local effect
 - h large: smoother estimation, with overlapping between kernels
- Estimation $\hat{p}(x) \to p(x)$ when $N \to \infty$
 - ullet h has to o 0, but slower than N (i.e. $Nh o \infty$)
 - ullet Typically, we set $h_N=h_1/\sqrt{N}$, using a window of h_N for a dataset of size N

Varying the number of observations

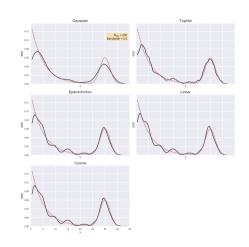


Properties of softening kernels

- Desirable properties of a softening kernel
 - 1. Positive (or zero) values: $K(x) \ge 0$, $\forall x$
 - 2. Area under the curve is equal to 1: $\int_{-\infty}^{\infty} K(x) dx = 1$
 - 3. Centred on the origin: $\int_{-\infty}^{\infty} x K(x) dx = 0$
- If properties 1 and 2 are respected, K(u) corresponds to a valid density function and therefore $\hat{p}(x)$ is also valid
- Moreover, if K(u) is continuous and differentiable, $\hat{p}(x)$ also is
- Support: spreading of u values for which K(u) is non-zero

Examples of softening kernels

- Gaussian
 - Differentiable, but support is not bounded
- Boxcar / TopHat: Naive histogram estimation
 - Bounded support, non-differentiable function
- Epanechnikov: $K(u) = (3/4)(1 u^2)$ for $u \in [-1,1]$
 - Bounded support, non-derivable function
- Linear / triangle: K(u) = 1 |u| for $u \in [-1,1]$
 - Bounded support, non-derivable function
- Cosinus: $K(u) = \cos(u \pi/2)$ for $u \in [-1,1]$
 - Bounded support, non-derivable function



Kernel estimation, multidimensional case

General equation of the kernel estimation in D dimensions

$$\hat{p}(\mathbf{x}) = \frac{1}{Nh^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right)$$

- Kernel constraint: $\int_{\mathbb{R}^D} K(\mathbf{x}) \ d\mathbf{x} = 1$
- Multivariate Gaussian kernel

$$K(\mathbf{u}) = \left(\frac{1}{\sqrt{2\pi}}\right)^D \exp\left[-\frac{\|\mathbf{u}\|^2}{2}\right]$$

- Sensitive to dimensionality and normalization of values in different dimensions
- ullet Kernel including a normalization based on the covariance estimation Σ

$$K(\mathbf{u}) = \frac{1}{(2\pi)^{0.5D} |\mathbf{\Sigma}|^{0.5}} \exp\left[-0.5\mathbf{u}^{\top}\mathbf{\Sigma}^{-1}\mathbf{u}\right]$$

Kernel estimation for classification

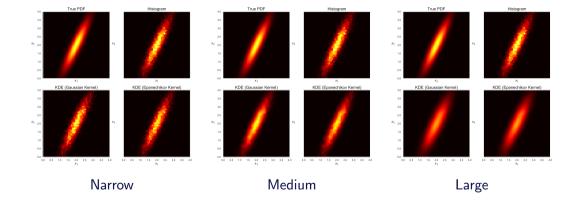
• Kernel estimation of $\hat{p}(\mathbf{x}|C_i)$

$$\hat{p}(\mathbf{x}|C_i) = \frac{1}{N_i h^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$$

• Corresponding discriminant function

$$\hat{P}(C_i) = \frac{N_i}{N}
h_i(\mathbf{x}) = \hat{p}(\mathbf{x}|C_i)\hat{P}(C_i)
= \frac{1}{Nh^D} \sum_{t=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^t}{h}\right) r_i^t$$

Kernel width: impact the classification



4.3 *k*-nearest neighbours

k-NN density estimation

- *k*-nearest neighbours (*k*-NN)
 - Reference dataset $\mathcal{X} = \{x^t\}_{t=1}^N$
 - Adapt the window width according to the local data density (k closest data)

$$\hat{p}(x) = \frac{k}{2Nd_k(x,\mathcal{X})}$$

- $h = d_k(x, \mathcal{X})$: distance from the k-th neighbour to the x data in \mathcal{X}
- Non-continuous estimator, similar to the naive histogram estimator, with adaptive h
 width

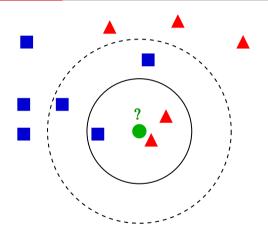
k-NN parameters

- k-NN is defined by three main parameters
 - Number of neighbours *k*
 - k low: narrow space division based on the reference dataset
 - k high: smoother, larger divisions, average depending on the neighbourhood
 - Distance measurement $D(\mathbf{x},\mathbf{y})$
 - Defines the neighbourhood relationship between the data
 - ullet Reference dataset ${\mathcal X}$
 - Dataset size
 - Density of distribution in the data space
 - Data representativeness (filtering)

k-NN classification

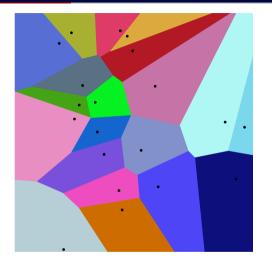
- k-nearest neighbours classification
 - Reference (training) dataset $\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$
 - To classify an unknown data x, compute the k-closest neighbours in \mathcal{X} using a distance measure (e.g., Euclidean distance)
 - Assign to x the most frequent label among those of the k-nearest neighbours
- Very simple and direct method for classification
- With k = 1, divide the input space according to a Voronoi diagram based on \mathcal{X} .

k-NN classification



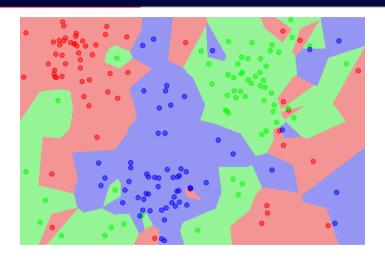
 ${\tt By\ Antti\ Ajanki,\ CC-BY-SA\ 3.0,\ https://en.wikipedia.org/wiki/File:KnnClassification.svg} \\$

Voronoï diagram (1-NN)



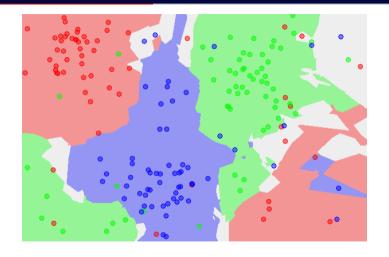
 $By \ Balu.ertl, \ CC-BY-SA\ 4.0, \ https://commons.wikimedia.org/wiki/File: Euclidean_Voronoi_diagram.svg$

Regions and borders for 1-NN



By Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:Map1NN.png

Regions and borders for 5-NN

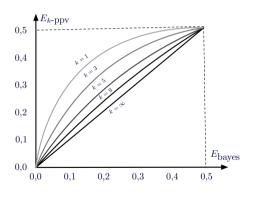


By Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:Map5NN.png

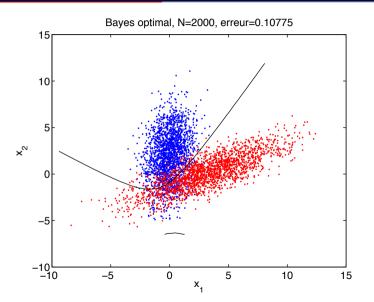
4.4 Notions about k-NN

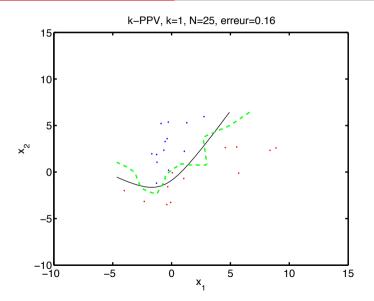
Bounds of the *k*-NN classifier

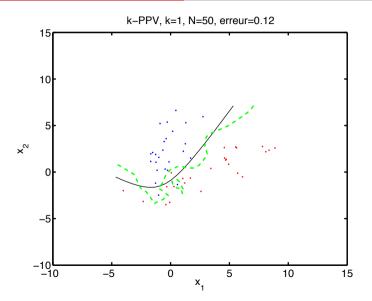
- Optimal Bayesian error rate (E_{bayes})
 - Error rate when true class probability densities are known
 - Optimal, impossible to do better in generalization
- Two bounds on the k-NN error rate
 - With k=1 and $N \to \infty$ then $E_{1\text{-ppv}} \le 2E_{\text{baves}}$
 - With $k \to \infty$ and $N \to \infty$ then $E_{k\text{-ppv}} \to E_{\text{baves}}$

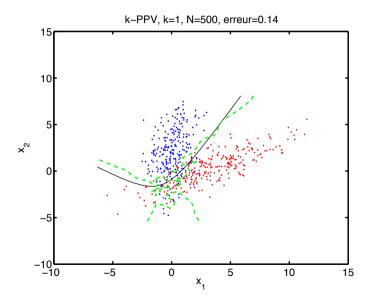


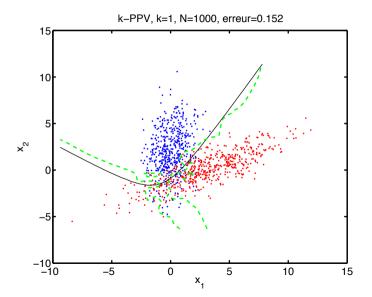
Optimal Bayesian classification (N = 2000)



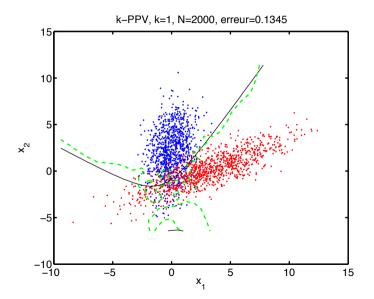




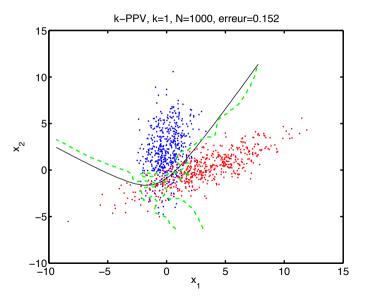




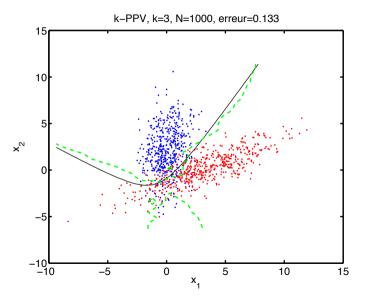
Varying the number of observations, k = 1, N = 2000



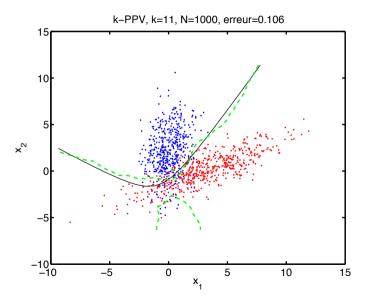
Varying the number of neighbours, k = 1, N = 1000



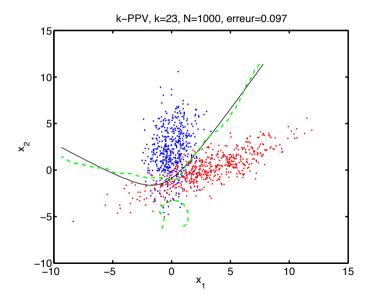
Varying the number of neighbours, k = 3, N = 1000



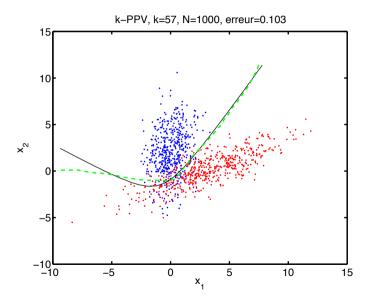
Varying the number of neighbours, k = 11, N = 1000



Varying the number of neighbours, k = 23, N = 1000



Varying the number of neighbours, k = 57, N = 1000



Distances

- The distance measurement gives the neighbourhood relationship between the data
- Mathematical definition of a metric $D: X \times X \mapsto \mathbb{R}$
 - Non-negativity: $D(\mathbf{x},\mathbf{y}) \geq 0$
 - Reflexivity: $D(\mathbf{x},\mathbf{y}) = 0$ iff $\mathbf{x} = \mathbf{y}$
 - Symmetry: $D(\mathbf{x},\mathbf{y}) = D(\mathbf{y},\mathbf{x})$
 - Inequality of the triangle: $D(\mathbf{x},\mathbf{z}) \leq D(\mathbf{x},\mathbf{y}) + D(\mathbf{y},\mathbf{z})$
- Different distance measurements are possible
 - Euclidean distance
 - Minkowsky distance
 - Tanimoto distance (distance between sets)
 - Tangent distance

Minkowsky distance

Minkowsky distance

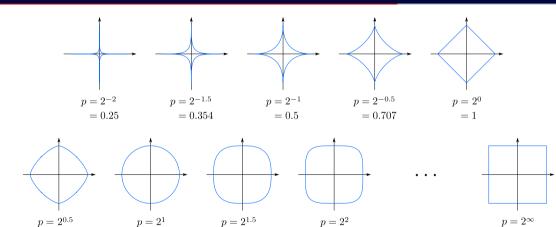
$$\mathrm{D}_p(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^D |x_i - y_i|^p\right)^{1/p}$$

- Parameter p controls the emphasis on the dimensions where the magnitude is greatest
- Manhattan distance (p = 1), equal weight for all the dimensions: $D_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{D} |x_i y_i|$
- Distance D_{∞} , using only the dimension where the difference is of maximum magnitude: $D_{\infty}(\mathbf{x},\mathbf{y}) = \max_{i=1}^{D} |x_i y_i|$
- Euclidean distance (p=2), trade-off between these extremes: $D_2(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^{D} (x_i y_i)^2}$

Illustration of the Minkowsky distance

=2

= 1.414



By Waldir, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:2D_unit_balls.svg

= 4

= 2.828

 $=\infty$

Data normalization

- Distance measurement sensitive to data scale of all the dimensions
 - Values in a dimension where the scale is large relative to the other dimensions will absorb the value of the other dimensions

$$|x_j - y_j| \gg |x_i - y_i|, \ \forall i \neq j \quad \Rightarrow \quad \mathrm{D}(\mathbf{x}, \mathbf{y}) \approx |x_j - y_j|$$

- Standardization of the data is necessary if the scales are different according to the dimensions
 - Standardization according to the meaning of the data (physical units)
 - Standardization according to max-min value of each dimension
 - Whitening transformation

Performance evaluation leave-one-out

- No training required with k-NN
 - ullet Training simply consists in storing the dataset ${\mathcal X}$
- Leave-one-out performance evaluation
 - Takes advantage of zero cost training
 - Corresponds to K-folds cross validation, with K = N
- 1. For each data $\mathbf{x}^t \in \mathcal{X}$:
 - 1.1 Calculate the k-NN of \mathbf{x}^t among the $\mathcal{X}\setminus\{\mathbf{x}^t\}$ set
 - 1.2 Determine the most common label of these k closest neighbours as a classification label of \mathbf{x}^t
- 2. For computing the error rate, return the ratio between the number of misclassified data in $\mathcal X$ and the size of $\mathcal X$

4.5 Computational efficiency of

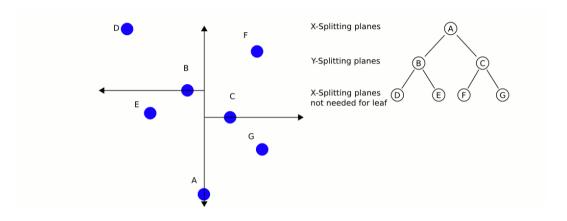
k-NN

Algorithmic complexity of *k*-NN

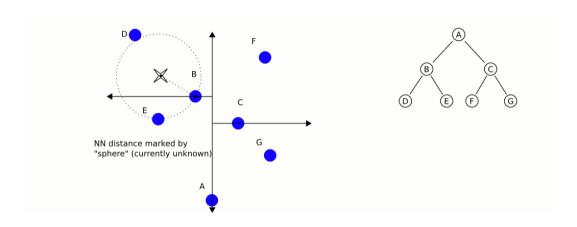
- Training: data storage in memory
 - Complexity in time and memory: O(N)
- Data processing (test/validation): get the *k* neighbours
 - Get the k closest neighbours of \mathbf{x} in \mathcal{X} : complexity in time $O(N \log N)$ (naive algorithm)
 - Classifying M data: complexity in time $O(MN \log N)$
- It is possible to optimize the calculations by using more sophisticated methods

KD-Tree

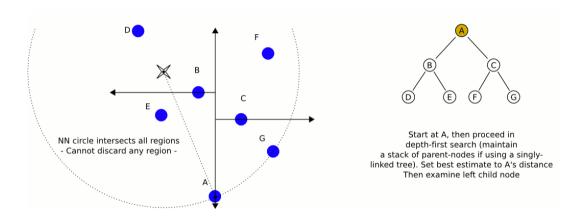
- Structure/topology of data in space can be exploited for the search of the k-NN
 - Avoid calculating the distance with some data, which are anyway too far from the data under test
- KD-tree: tree-like data structure capturing data topology in a Euclidean space
 - Construction of the KD-Tree for N data: $O(N \log N)$.
 - Required storage space of KD-Tree: O(N).
 - Querying the k-NN of a data in a KD-Tree
 - $O(N^{\frac{D-1}{D}} + k)$ in D dimensions
 - $O(\sqrt{N}+k)$ in 2D
 - $O(\log N)$ with k=1
 - Processing of M data: $O(M(N^{\frac{D-1}{D}} + k))$
- Efficient implementations of KD-tree are available (e.g., CGAL in C++, scipy.spatial.KDTree in Python)



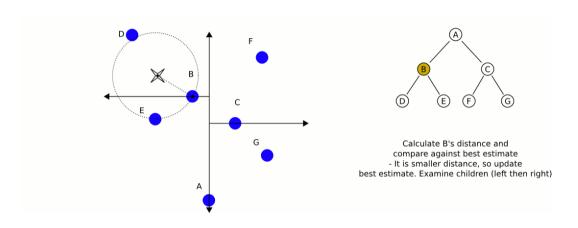
By User_A1, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif



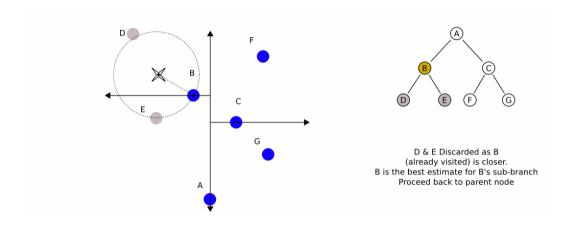
By User_A1, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif



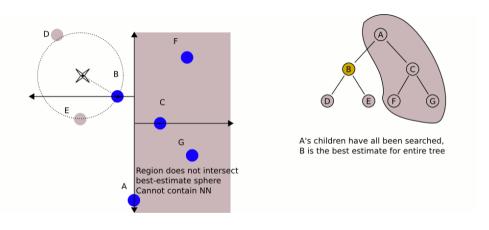
 $By\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$



 $By\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$



 $By\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$



 $By\ User_A1,\ CC-BY-SA\ 3.0,\ https://commons.wikimedia.org/wiki/File:KDTree-animation.gif$

4.6 Prototype selection

Size of training dataset

- Trade-off to make on the size of the training set
 - ullet With $N o \infty$, the algorithm tends toward optimal performance
 - ullet But with $N o\infty$, processing time and storage needs are huge
- Depending on the position, data density may vary
 - Far from decision boundaries, point density can be reduced
 - Outliers or noisy data in a different class region could be removed
- Approximation of decision boundaries by selecting a few representatives

Hart condensation

- Hart condensation
 - ullet Objective: select only ${\mathcal X}$ data contributing to the classification
 - Heuristics making an incremental construction of the set of prototypes
- Approach
 - Start with an almost empty set of prototypes (a randomly chosen data)
 - Add data only if they are misclassified according to the NN
 - Repeat as long as there are misclassified unselected data

Hart condensation

- 1. Create a set of prototypes selected from an \mathbf{x} data randomly chosen in \mathcal{X} , $\mathcal{Z} = \{\mathbf{x}\}$
- 2. As long as the \mathcal{Z} set is modified relative to the previous iteration:
 - 2.1 For each data $\mathbf{x}^t \in \mathcal{X}$, processed in random order:
 - 2.1.1 Determine the closest neighbour of \mathbf{x}^t in \mathcal{Z}

$$\mathbf{x}' = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{Z}} \|\mathbf{x}^t - \mathbf{x}\|$$

- 2.1.2 If the class label of \mathbf{x}' does not match the class label of \mathbf{x}^t $(r' \neq r^t)$, then select the data as a prototype, $\mathcal{Z} = \mathcal{Z} + \{\mathbf{x}^t\}$
- 3. Return the set ${\mathcal Z}$ as the prototypes selected in ${\mathcal X}$

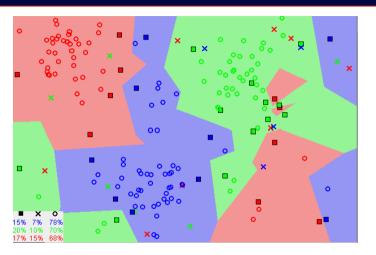
Wilson edition

- Wilson edition
 - ullet Heuristics to remove misclassified data from ${\mathcal X}$ according to leave-one-out
 - Eliminates data that is thought to be aberrant or noisy
- 1. Create the set of prototypes $\mathcal Z$ from all the data, $\mathcal Z=\mathcal X$
- 2. For each data $\mathbf{x}^t \in \mathcal{Z}$, processed in random order:
 - 2.1 Determine V, which are the k-NN of \mathbf{x}^t in $\mathcal{Z}\setminus\{\mathbf{x}^t\}$
 - 2.2 Determine the classification label $r_{\mathcal{V}}^t$ of \mathbf{x}^t according to the most common label of the data in \mathcal{V}
 - 2.3 If the $r_{\mathcal{V}}^t$ label is different from the r^t label of \mathbf{x}^t , then remove the data from \mathcal{Z} , $\mathcal{Z} = \mathcal{Z} \setminus \{\mathbf{x}^t\}$
- 3. Return the set ${\mathcal Z}$ as the prototypes selected in ${\mathcal X}$

Other approaches to generate prototypes

- Aggressive selection of prototypes: Wilson's edition followed by Hart's condensation
 - ullet Filter ${\mathcal X}$ by first eliminating aberrant or noisy data (Wilson edition)
 - Select only the data contributing to the classification (Hart condensation)
- Prototype building
 - ullet Determine prototypes that are not data in ${\mathcal X}$
 - ullet Possible approach (unsupervised): K-means of ${\mathcal X}$ with high K value

Wilson + Hart illustration



 ${\tt By\ Agor153,\ CC-BY-SA\ 3.0,\ https://en.wikipedia.org/wiki/File:Map1NNReducedDataSet.png} \\$

 \times : data removed by Wilson (k=3) \square : prototypes selected by Hart O: data removed by Hart

4.7 Nonparametric methods in

scikit-learn

Scikit-learn: density estimation

- neighbors.KernelDensity: kernel density estimation
 - Parameters
 - bandwidth (float): kernel width
 - algorithm (string): neighbourhood algorithm to use, can be 'kd_tree',
 'ball_tree' or 'auto' (default: 'auto')
 - kernel (string): noyau utilisé, peut être 'gaussian', 'tophat', 'epanechnikov',
 'exponential', 'linear' ou 'cosine' (default: 'gaussian')
 - Methods
 - fit(X): learn density from data
 - sample(n_samples=1): generates samples of the distribution (only for Gaussian and tophat kernels)
 - score(X): returns the log-likelihood of the data
 - score_samples(X): returns the density of data

Scikit-learn: *k*-nearest neighbours

- neighbors.KneighborsClassifier: classification with the *k*-nearest neighbours method
 - Parameters
 - n_neighbors (int): number of neighbours used (default: 5)
 - algorithm (string): neighbourhood algorithm to use, can be 'kd_tree',
 'ball_tree', 'brute' or 'auto' (default: 'auto')
 - metric (string or object neighbors.DistanceMetric): distance metric used. By default 'minkowski' with p = 2, which returns to a Euclidean distance. For other metrics, see documentation of neighbors.DistanceMetric.
 - p (int): value of p for the Minkowski distance (default: 2)
 - Methods
 - fit(X,y): learn classification model from data
 - kneighbors(X, n_neighbors): returns the k-nearest neighbours to the data
 - predict(X): does the data classification
- neighbors.KneighborsRegressor: regression by k-nearest neighbours