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4.1 Histogram estimation



Nonparametric methods

e Parametric methods (including mixture models)
e Probability densities (p(x)) selected in advance (typically, x ~ Np(u,X))
e Search for the parameterization of these densities
e Nonparametric methods
e Estimate the probability density directly from the data
e No hypothesis a priori on the distribution of data
e Main approaches

e Histogram estimation
e Kernel density estimation
e k-nearest neighbours (k-NN)



Nonparametric density estimation

e Probability that value x is less than or equal to a
e Px<a)= [ p(x)dx

X=—00

e Estimation by sampling {x'}M,: P(x < a) = #{X,Fa}

e Estimated value x in the range [a,a + h]

Pla<x<(a+h))= #{Xt<(a+hl)\l}_#{Xt<a}

e Approximation of density p(x) in [a,a + h] by constant value
P(x|x € [a,(a+ h)]) =~ p(a)

a+h
Plax<(ath) = [ p(x) dexpa)(a+ h-2) = hia)

1{#{% < (a+h)} — #{xt < a)
h N ,

p(x|x € [a,(a + h)])



Histogram estimation

e Histogram estimation (1D)
e Divide the input space into compartments of equal size (bins)
e Each bin is h wide and positioned with respect to an origin xg

|xo + mh,xo + (m + 1)A], with m n natural number

e Estimation in 1D, from a set {x‘} ¥,

N xt in the same bin than x
px) = H Nh )

e Choice of origin xp may slightly affect the estimator (boundary discontinuities)
e Choice of width h significantly affects the estimator

e |f the value of h is low, many peaks in the estimate

e If the value of h is high, softer (less accurate) estimate



Histogram density estimation
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Estimation in many dimensions

e Histogram estimation in many dimensions
e Bins corresponding to equal hypervolume hypercubes
e Highly impacted by the curse of dimensionality
e General conditions for estimates to converge to the true probability density,
p(x) — p(x)
e Volume V,, of each bin reduced
lim V, =0

n—oo

e Number of observations k, per bin is very high

lim k, =
n— o0

e Ratio of the number of observations per bin to total number of observations is high



2D density estimations
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Naive histogram density estimation

e Naive histogram estimator (also known as a Parzen window)

e Estimate the density around x in a hypercube of width 2h
e Formulation in 1D

L Ly (e
2Nh 2=\ h
where w(u) = L if | < 1
0 otherwise

e Removes the origin xg
e The estimation is not continuous and has steps at xt &+ h
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4.2 Kernel density estimation



Kernel density estimation

e Kernel density estimation: softer estimation than the naive histogram estimator

e Use a softening kernel, typically a Gaussian kernel

K(u) = \/%exp {—“22]

Convolution of the softening kernel with data {x*}NM ;

Blx) = l\}héK (X _hxt)

Kernel K(-) determines the shape of influence of the data
Window width h determines the width of the data influence
Generalizes the naive estimation, which uses a rectangular box as a kernel
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Kernel density estimation
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Quality of the kernel density estimate

e Window width greatly influences the estimate

e h small: each data has an important local effect
e h large: smoother estimation, with overlapping between kernels

e Estimation p(x) — p(x) when N — oo

e h has to — 0, but slower than N (i.e. Nh — o0)
e Typically, we set hy = h;/+/N, using a window of hy for a dataset of size N
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Varying the number of observations
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Properties of softening kernels

Desirable properties of a softening kernel

1. Positive (or zero) values: K(x) > 0, Vx

2. Area under the curve is equal to 1: [ K(x) dx =1

oo

3. Centred on the origin: [ x K(x) dx =0

— 00

If properties 1 and 2 are respected, K(u) corresponds to a valid density function

and therefore p(x) is also valid

Moreover, if K(u) is continuous and differentiable, p(x) also is

Support: spreading of u values for which K(u) is non-zero
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Examples of softening kernels

e Gaussian

e Differentiable, but support is not bounded

Boxcar / TopHat: Naive histogram

estimation /\ /\
e Bounded support, non-differentiable \_A

function

Epanechnikov: K(u) = (3/4) (1 — u?) for
B, \\&J\ \M e

e Bounded support, non-derivable function

Linear / triangle: K(u) =1 — |u| for

ue[-11] k.
e Bounded support, non-derivable function - ’A

Cosinus: K(u) = cos(um/2) for u € [-1,1]

e Bounded support, non-derivable function 15



Kernel estimation, multidimensional case

e General equation of the kernel estimation in D dimensions

hDZ (x—x>

e Kernel constraint: [, K(x) dx =1

e Multivariate Gaussian kernel

- () 4

e Sensitive to dimensionality and normalization of values in different dimensions
e Kernel including a normalization based on the covariance estimation X
1

) = Grypsorses

exp [—O.SUTE_IU}
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Kernel estimation for classification

e Kernel estimation of p(x|C;)

p(x|Ci) =

e Corresponding discriminant function

e (45)7
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Kernel width: impact the classification

KDE (Gaussian Kemel) KDE (Epanechikov Kernel) KDE (Gau KDE (Epanechikov Kernel)

[/ ]/

Narrow Medium Large

KDE (Epanechikov Kernel)
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4.3 k-nearest neighbours




k-NN density estimation

e k-nearest neighbours (k-NN)
e Reference dataset X = {x'}N;
e Adapt the window width according to the local data density (k closest data)

) k
P = SNa )

e h = di(x,X): distance from the k-th neighbour to the x data in X

e Non-continuous estimator, similar to the naive histogram estimator, with adaptive h
width

19



k-NIN parameters

e k-NN is defined by three main parameters
e Number of neighbours k

e k low: narrow space division based on the reference dataset
e k high: smoother, larger divisions, average depending on the neighbourhood

e Distance measurement D(x,y)
e Defines the neighbourhood relationship between the data
e Reference dataset X

e Dataset size
e Density of distribution in the data space
e Data representativeness (filtering)

20



k-NN classification

e k-nearest neighbours classification

e Reference (training) dataset X' = {x,rt}V

e To classify an unknown data x, compute the k-closest neighbours in X using a

distance measure (e.g., Euclidean distance)
e Assign to x the most frequent label among those of the k-nearest neighbours

e Very simple and direct method for classification

e With kK =1, divide the input space according to a Voronoi diagram based on X.

21



k-NN classification

By Antti Ajanki, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:KnnClassification.svg
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https://en.wikipedia.org/wiki/File:KnnClassification.svg

By Balu.ertl, CC-BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
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https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg

Regions and borders for 1-NN
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By Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:MapiNN.png
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https://en.wikipedia.org/wiki/File:Map1NN.png

Regions and borders for 5-NN
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By Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:Map5NN.png
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4.4 Notions about k<-NN




Bounds of the k-NN classifier

e Optimal Bayesian error rate (Ebayes)
e Error rate when true class probability
densities are known
e Optimal, impossible to do better in
generalization
e Two bounds on the k-NN error rate
e With k=1 and N — oo then
Ei-ppv < 2Ebayes
e With kK — oo and N — oo then
E-ppv = Epayes

0,4

0,3

0,2

0,1

0,0

A Ex-ppv

I
i Ebayos
i
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Optimal Bayesian classification (/N = 2000)

Bayes optimal, N=2000, erreur=0.10775
15 . . . .

—10 -5 0 5 10 15
X, 27



Varying the number of observations, k =1, N =25

k-PPV, k=1, N=25, erreur=0.16
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Varying the number of observations, k =1, N = 50

k-PPV, k=1, N=50, erreur=0.12
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Varying the number of observations, k =1, N =

k-PPV, k=1, N=500, erreur=0.14
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Varying the number of observations, k =1, N = 1000

k-PPV, k=1, N=1000, erreur=0.152

X, 31



Varying the number of observations, kK =1, N = 2000

k-PPV, k=1, N=2000, erreur=0.1345
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Varying the number of neighbours, Kk =1, N = 1000

k-PPV, k=1, N=1000, erreur=0.152
15 T T T r

15
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Varying the number of neighbours, kK =3, N = 1000

k-PPV, k=3, N=1000, erreur=0.133

X, 34



Varying the number of neighbours, kK =11, N = 1000

k-PPV, k=11, N=1000, erreur=0.106
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Varying the number of neighbours, kK =23, N = 1000

k-PPV, k=23, N=1000, erreur=0.097

[
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Varying the number of neighbours, kK =57, N = 1000

k-PPV, k=57, N=1000, erreur=0.103




Distances

e The distance measurement gives the neighbourhood relationship between the data
e Mathematical definition of a metric D : X x X — R

e Non-negativity: D(x,y) >0

e Reflexivity: D(x,y) =0iff x =y

e Symmetry: D(x,y) = D(y,x)

e Inequality of the triangle: D(x,z) < D(x,y) + D(y,z)
e Different distance measurements are possible

e Euclidean distance

e Minkowsky distance

e Tanimoto distance (distance between sets)

e Tangent distance

38



Minkowsky distance

e Minkowsky distance

D 1/p
Dp(xy) = (Z Ix; — y,-|P>

i=1
e Parameter p controls the emphasis on the dimensions where the magnitude is
greatest
e Manhattan distance (p = 1), equal weight for all the dimensions:
D

Di(xy) =32y Ixi — il
e Distance D, using only the dimension where the difference is of maximum

magnitude: Do (x,y) = max2; |x; — yi
e Euclidean distance (p = 2), trade-off between these extremes:

Da(xy) = \/ 224106 = yi)?

39



lllustration of the Minkowsky distance
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By Waldir, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:2D_unit_balls.svg
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Data normalization

e Distance measurement sensitive to data scale of all the dimensions

e Values in a dimension where the scale is large relative to the other dimensions will
absorb the value of the other dimensions

Ixi —yjl > Ixi—yil. Vi#j = D(xy)~|x—y

e Standardization of the data is necessary if the scales are different according to the
dimensions
e Standardization according to the meaning of the data (physical units)
e Standardization according to max-min value of each dimension
e Whitening transformation

41



Performance evaluation leave-one-out

e No training required with k-NN
e Training simply consists in storing the dataset X’
e [eave-one-out performance evaluation

e Takes advantage of zero cost training
e Corresponds to K-folds cross validation, with K = N

1. For each data xf € X

1.1 Calculate the k-NN of x* among the X'\{x"} set
1.2 Determine the most common label of these k closest neighbours as a classification
label of x*

2. For computing the error rate, return the ratio between the number of misclassified
data in X and the size of X’

42



4.5 Computational efficiency of
k-NN




Algorithmic complexity of k<-NN

e Training: data storage in memory
e Complexity in time and memory: O(N)
e Data processing (test/validation): get the k neighbours

e Get the k closest neighbours of x in X: complexity in time O(N log N) (naive
algorithm)
o Classifying M data: complexity in time O(MN log N)

e |t is possible to optimize the calculations by using more sophisticated methods

43



e Structure/topology of data in space can be exploited for the search of the k-NN
e Avoid calculating the distance with some data, which are anyway too far from the
data under test
o KD-tree: tree-like data structure capturing data topology in a Euclidean space
e Construction of the KD-Tree for N data: O(N log N).
e Required storage space of KD-Tree: O(N).
e Querying the k-NN of a data in a KD-Tree
o O(N’5" + k) in D dimensions
e O(VN + k) in 2D
e O(log N) with k =1
e Processing of M data: O(M(N% + k)
e Efficient implementations of KD-tree are available (e.g., CGAL in C++,
scipy.spatial.KDTree in Python)
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Hlustration of KD-tree
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By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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Hlustration of KD-tree
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By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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Hlustration of KD

NN circle intersects all regions
“. - Cannot discard any region -

*

®

/N
Q
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Start at A, then proceed in
depth-first search (maintain
a stack of parent-nodes if using a singly-
linked tree). Set best estimate to A's distance
Then examine left child node

By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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Hlustration of KD-tree

®
x|t /\/ \/©\
% ® ®6 6

G Calculate B's distance and
. compare against best estimate
- It is smaller distance, so update
best estimate. Examine children (left then right)

By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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Hlustration of KD-tree

- ®
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. D & E Discarded as B
(already visited) is closer.
B is the best estimate for B's sub-branch
A Proceed back to parent node

By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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Hlustration of KD-tree

D A . ®
A \/©\
® ®\® ©

© A's children have all been searched,
. B is the best estimate for entire tree

Region does not intersect
best-estimate sphere
Cannot contain NN

By User_Al, CC-BY-SA 3.0, https://commons.wikimedia.org/wiki/File:KDTree-animation.gif
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4.6 Prototype selection




Size of training dataset

e Trade-off to make on the size of the training set

e With N — oo, the algorithm tends toward optimal performance
e But with N — oo, processing time and storage needs are huge

e Depending on the position, data density may vary

e Far from decision boundaries, point density can be reduced
e Outliers or noisy data in a different class region could be removed

e Approximation of decision boundaries by selecting a few representatives
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Hart condensation

e Hart condensation

e Objective: select only X' data contributing to the classification

e Heuristics making an incremental construction of the set of prototypes
e Approach

e Start with an almost empty set of prototypes (a randomly chosen data)
e Add data only if they are misclassified according to the NN
e Repeat as long as there are misclassified unselected data

52



Hart condensation

1. Create a set of prototypes selected from an x data randomly chosen in X,
Z ={x}

2. As long as the Z set is modified relative to the previous iteration:
2.1 For each data xt € X, processed in random order:

2.1.1 Determine the closest neighbour of x" in Z
’ H t
x' = argmin ||x" — x||
x€EZ

2.1.2 If the class label of x’ does not match the class label of x* (r’ # r"), then select the
data as a prototype, Z = Z + {x'}

3. Return the set Z as the prototypes selected in X

53



Wilson edition

e Wilson edition
e Heuristics to remove misclassified data from & according to leave-one-out

e Eliminates data that is thought to be aberrant or noisy

1. Create the set of prototypes Z from all the data, Z =X

2. For each data x! € Z, processed in random order:

2.1 Determine V, which are the k-NN of x* in Z\{x"}
2.2 Determine the classification label r{, of x* according to the most common label of

the data in V
2.3 If the r), label is different from the r* label of x*, then remove the data from Z,

z = 2\[xt}
3. Return the set Z as the prototypes selected in X

54



Other approaches to generate prototypes

e Aggressive selection of prototypes: Wilson's edition followed by Hart's
condensation

e Filter X' by first eliminating aberrant or noisy data (Wilson edition)
e Select only the data contributing to the classification (Hart condensation)

e Prototype building

e Determine prototypes that are not data in X
e Possible approach (unsupervised): K-means of X with high K value

55



Wilson + Hart illustration
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By Agor153, CC-BY-SA 3.0, https://en.wikipedia.org/wiki/File:MapiNNReducedDataSet.png

X: data removed by Wilson (k = 3) []: prototypes selected by Hart O: data removed by Hart
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4.7 Nonparametric methods in
scikit-learn




Scikit-learn: density estimation

e neighbors.KernelDensity: kernel density estimation
e Parameters

e bandwidth (float): kernel width

e algorithm (string): neighbourhood algorithm to use, can be *kd_tree’,

’ball_tree’ or ’auto’ (default: *auto’)
kernel (string): noyau utilisé, peut étre ’gaussian’, *tophat’, ’epanechnikov’,
’exponential’, ’linear’ ou ’cosine’ (default: ’gaussian’)
e Methods
e fit(X): learn density from data

sample (n_samples=1): generates samples of the distribution (only for Gaussian and
tophat kernels)

e score(X): returns the log-likelihood of the data
e score_samples(X): returns the density of data

57



Scikit-learn: k-nearest neighbours

e neighbors.KneighborsClassifier: classification with the k-nearest
neighbours method
e Parameters

e n neighbors (int): number of neighbours used (default: 5)

e algorithm (string): neighbourhood algorithm to use, can be *kd_tree’,
’ball_tree’, ’brute’ or ’auto’ (default: *auto’)

e metric (string or object neighbors.DistanceMetric): distance metric used. By
default *minkowski’ with p = 2, which returns to a Euclidean distance. For other
metrics, see documentation of neighbors.DistanceMetric.

e p (int): value of p for the Minkowski distance (default: 2)

e Methods

o fit(X,y): learn classification model from data

e kneighbors(X, nneighbors): returns the k-nearest neighbours to the data

e predict(X): does the data classification

e neighbors.KneighborsRegressor: regression by k-nearest neighbours
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