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3.1 Multivariate data



Multivariate data

e Parametric methods as seen last week = estimating a variable X

e In general, we measure several variables {X;,X5,...,Xp} for a data

X={x"r il x =[x xp]T

e Naming for variables (X;)
Matrix representation:

e Inputs

o Features 1 1 1

e Attributes :; 22 ?
. t Xl X2 A XD

e Naming for data (x*) X =

e Observations .N .N .N

e Examples Xy X3 o Xp

e Instances



Means and variances, multivariate case

e Mean vector p defined as the mean of each column (each variable) of a set X

E[X] = p = [ p2 -+ pp]"

i

e Variance of a variable X is o
e Covariance of two variables X; and X; is noted o; ;

0ij = Cov(Xi,X;) = E[(Xi — 1) (X; — ;)] = E[X; Xj] — pips;

e Covariance matrix X

2
of 012 -+ 01D
e Symmetrical D x D matrix (o = 0} ) ! >
" . 012 03 ' 02D
e Positive values on the diagonal 3 =
(01 = 0?) :
2
T=Cov(X) = E|(X-pm)(X-p)| oD 020 0 Oh

- E [xxT} — T



Mean and covariance of samples

X2




Estimator of means and variances, multivariate case

e Estimator of the mean based on maximum likelihood

N t N t
1 X L XF .
m = Ztﬁl , where m; = Ztl_vl Li=1,...,D
e Let S, the estimator of the covariance matrix X
2 .
5] S1,2 51,D N . 5
2 2 D=1 — mi)
S12 S "t 82D s = ==
S= N
Sy (= mi)(xt = m;)
) . - t=1\X; — Mi){X; — m;
Si,D 2,0 - Sp o = N

e Developing equations for S is complex, it requires the application of the spectral
theorem



Correlation

e Correlation between variables X; and X;

COI‘I‘(X,',)(j) =pij= —

oo}

e Standardized statistical measure, =1 < p;; <1

e Two independent variables X; and X; = zero correlation

e The inverse is, however, not true, even if p; ; = 0, variables X; and X; are not
necessarily independent (non-linear relation between variables)

e Estimation of correlation

rij =
vl Sisj

e Matrix R is the matrix of the correlation estimator containing the r;;



Correlation and non-linearity
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Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png
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3.2 Multivariate normal
distribution



Multivariate normal distribution

e Multidimensional normal distribution Np(u,X)

1 1
) = a5 ) e )

Z=PDF(x1,X2)

e Mean vector p: distribution centre

e Normalization by the inverse of the covariance
matrix X




Two-dimensional case

e Two-dimensional normal distribution (o ; = pojo;):

[Ml
“:
M2

e Four possible cases for X

==

2

01 pPo102
2

pPo102 05

1. Diagonal X (p = 0) and equal variance for both dimensions (isotropic),
0?2 =03 =02

2. Diagonal X (p = 0) and different variances for the two dimensions, 0 # o3
3. Positive correlation between variables, p > 0

4. Negative correlation between variables, p < 0



Two-dimensional case
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Properties of the multivariate normal distribution

e The value of the determinant |X| indicates the proximity of samples around p
e A low value may indicate high correlation between variables

e Generally, 3 is a symmetrical positive-definite matrix
e Otherwise, X is singular and |[X| =0
= Linear dependence between variables
= One of the variables has a variance of 0

o If x ~ Np(u,X) then x; ~ N (p;,5%)
e If x; are independent (0;; = 0, Vi # j), then x; ~ N(pj,0?)
e A linear projection defined by W in a space with K dimensions (K < D) also
follows a multivariate normal distribution

W x ~ Nk (WTH,WTEW)
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Conditional law of multivariate normal distribution

= Plx2)
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Mahalanobis distance

e Mahalanobis distance

Du(x) = (x = 1) =7 x — p)

Ax2

e Distance between the mean vector g and
a point x, weighted by the covariance i c?
matrix X.

e Contour line corresponds to a constant
distance c?

e 1D case 331
2 >

(x —p) 2\—1
I~ (- )0 - )
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3.3 Multivariate classification




Multivariate classification

e Conditional probability density for classes p(x|C;) ~ Np(u;,X;)

p(x/C) = o) T2 )

; {
————————exp
(2m)0 0|5,

e Reasons for using normal distribution in multivariate classification
e Simplicity of the equation for analytical developments
e Model that describes many natural phenomena accurately

e Observations are generally slight variations (X) of a mean observation ()
e Robust model, allows good approximations

e However, requires data to be grouped together

e With several groups, we must use a mixture distribution, which is a linear
combination of several densities (presented later)
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Example of multivariate classification

Z = PDF(x1, X2)
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Discriminant function

e Discriminant function with multivariate model
hj(x) = log p(x| C;) + log P(C;)

e For a normal distribution, p(x|C;) ~ Np(ui, %)

D 1 1 _
hi(x) = - log2m — - log|%i| — 5 (x — i) 7 (x — i) + log P(G;)
1 1 _
= —5log|%if =S (x~ i) 7 (x — pi) + log P(G;)
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Parameters estimate

e Parameters estimate based on maximum likelihood
1 ifxteC

e Set X = {xt,r!}N . with rf = !

{ t=1 ! { 0 otherwise

3 rt
pG) = =l

Zt ritxt

ot
s > (xF —mj)(x" —m;)
Soerf

m;, =

T
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Quadratic discriminant function

e Include P(C;), m; and S; into the formula of h;(x)
1 1 Tg-1 B
hi(x) = —7 log [Si| — 5 (x —m;) S;(x — m;) + log P(Ci)

e Equivalent formulation

hi(x) = x'Wix+w/x+w
let
W, = _Esi
w;, = Srlmi
0 1 Tg-1 1 »
wp = —om S; m;—ilog\SiH'OgP(Ci)
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Examples of quadratic discriminant function (1/3)

18



—~
(32
S~
(9]
~
c
8
=)
Q
c
=
[
-
c
(1]
£
€
‘=
Q
A
©
o
pres)
(o]
-
©
o]
=
(=2
[
(=]
(2]
2
m.
o]
X
L

19



—~
(32
S~
o™
~
c
8
=)
Q
c
=
[
-
c
(1]
£
€
‘=
Q
A
©
o
pres)
(o]
-
©
o]
=
(=2
[
(=]
(2]
2
m.
o]
X
L

20



The curse of dimensionality

e The curse of dimensionality
e The addition of a dimension creates an exponential increase of the mathematical
space
e If 100 points are equidistant from 0.01 in one dimension = 10%° points are needed
in 10 dimensions to keep the same sampling density

e High number of parameters to be estimated with quadratic discriminant function

D(D+1 . )
e K x D for means and K x (; ) for covariance matrices

e With a high dimensionality (large D) and few data (small N), high risk of singular
matrices S;

e Even if |S;| # 0, a small change can cause a large variation of S,-_1 = instabilities

e Solution: dimensionality reduction by feature selection or projection (seen at the
end of the semester)

21



The curse of dimensionality

p 1 dimension:
10 positions
*

2 dimensions:
100 positions
[

3 dimensions:
> 1000 positions!

Source: Y. Bengio, http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg, accessed October 2, 2016.
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3.4 Model simplifications for
classification




Sharing the covariance matrix

e Simplification 1: sharing the covariance matrix

S=> P(C)Si

K x D parameters for means

D(D+1 . .
% parameters for shared covariance matrix

Corresponding discriminant function

h;(x) = —%(x —m;) S7(x —m;) + log P(C))

e x' S™*x common for all h;(x)

Reformulation as a linear discriminant function

1 "
hi(x) =w'x+w’, w;=S"'m;, w?= —Em,-TS_lm/ + log P(G;)
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Linear and quadratic discriminant functions (1/2)




Linear and quadratic discriminant functions (2/2)




Naive Bayes classifier

e Simplification 2: elements out of the diagonal of S have a value of 0

s2 0 - 0
0 s2 ... 0
s=| . 7
o 0 --- 5%

e Corresponding discriminant function (naive Bayes classifier)

D 2
1 Xi — mj; A
hi(x) = —= s log P(C;
(=32 (25™) +roe(c)
e Number of parameters for the covariance matrix: D

e Reduction from a quadratic to a linear order
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Nearest mean classifier

e Simplification 3: isotropic covariance matrix, with all variances equal (o; = o, Vi)

e Reduction from a Mahalanobis distance to a Euclidean distance

(= TS ) = o 2x ) () = X
e Corresponding discriminant function
Ix — pai? 5 1O 5
hi(x) = —Tz.’ +log P(C) = =55 > (x5 — mij)? +log P(C)
j=1

e Simplification 4: a priori equal probabilities (P(C;) = P(C;), Vi)
o Nearest mean classifier
hi(x) = —|lx — m;]?
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Nearest mean classifier

hi(x) = —[lx—m?

As x " x, common Vh;(x)

hi(x) = wix+u!
W, = m;
1

wf = 3 lmi?

28



3D examples with simplifications

Quadratic Linear Nearest mean
s
=0
0 Yo 0
8 ) 8
X < B
.
o 2 ”/ 2 o 2
2 :
= R 0 . < .
% o\, 7;“;\/@5 . ™ * s < L + \ Y
N Yo = - Y e - 2 ‘X
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Effect of the a priori probabilities (linear case)

P(C1) =0.99, P(C) =0.01  P(Cy) =050, P(G) =050  P(Cy)=0.01, P(C) = 0.99
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Effect of the a priori probabilities

Quadratic Linear Nearest mean

Pre=om

P(C1) = P(C,) = 0.5

0.99
0.01

P(Cy)
P(&)
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Summary of variants

ties

Densities Covariance matrices | Number of parameters
shared 3, hypersphere densities =3 =02 1
(isotropic)

shared 3, densities aligned on the | 3; =X and 0;; =0 D

axes

shared X, hyperellipsoidal densities =X D(D;l)
different 3, hyperellipsoidal densi- > K P(O+1)
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Discriminant analysis with regularization

e Rewriting of the covariance matrix

S =ad’l +8Z + (1 —a—B)%;

e o = =0 = quadratic discriminant

e o =0 and =1 = linear discriminant with shared covariance matrix

e a =1 and 8 =0 = linear discriminant with shared isotropic covariance matrix
(nearest mean classifier if a priori probabilities are equal)

e Variety of classifiers with & and 3 between these extreme values

e Possible regularization by an optimization criterion taking into account the values
of & and .
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3.5 Mixture distribution




Mixture distribution

e Parametric classification with normal distribution: one group per class

e With several modes in a single class, a normal distribution model is difficult to apply

e Mixture distribution: linear combination of density functions associated with

several groups
K

p(x) =>_ p(xG)P(G))

i=1

e Groups must be known and identified in the data
e Alternative: use an unsupervised approach (clustering) to learn the groups

e Mixture distribution of components based on a multivariate normal distribution
e Component density: (x|G;) ~ Np(ui, X))
e Parametrization: ® = {P(G;),ui, X},
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Probabilities for mixture distribution

e Mixture distribution
K

p(x) =Y p(xIG))P(G))

i=1

e Proportion of the group G; in the mixture, P(G;)
> PG =1
e Probability that x belongs to the group G;, P(Gi|x)

o P(Gi)p(x|Gi)
P(Gilx) = >2; P(G)p(x|G))
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3.6 Multivariate regression




Multivariate regression

e Model for a multivariate linear regression function
rt =h(x|wo,wa,...,wp) + €= wo + wixf + waxg + -+ wpxh + ¢
e White Gaussian noise centred at 0, ¢ ~ N(0,02)

e Minimization of the quadratic error (maximum likelihood)

1 2
t t t t
E(wo,wi,...,wpl|X) = EZ (r — W — WiX{ — WpXp — + -+ — WDXD)
t
e Solution based on partial derivatives

OE
2= =0,V
o, = 0
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Normal equations for multivariate regression

= NW0+leX{'FWQZX;'F“"FWDZXB
t t t

2
= NWQZX{-FWlZ(X{) +WZZ><1[><2!+~«
t t t

2
= Nwod g b wa D oxpg twe D ()
t t t

t t ot t ot
= NWOZXD+WIZX1XD+WQZX2XD+"‘
t t t

e Matrix version: X'r = X" Xw

1 xll le cen xb wo

1 x12 X22 cee X% wy
X = . LW o=

1 xlN xév xg wp

e Solving the system of linear equations

w=(X"X)"IXTr

+ wp Zx{xé
t

+ wp sztxz)
t

+wp > (xh)
t
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Notes on multivariate regression

e Normal equations: polynomials of order 1.
e Resolution with higher order polynomials is rare, except for low D

e Analysis by inspection of w; values

e w; gives the importance of the variable X;, it allows to classify the variables by order
of importance

e Remove the variables where w; —0
e Interesting for dimensionality reduction (will be seen at the end of the semester)

e Sign of w; gives an idea of the effect of the variable X;.

e Multiple output values = set of independent regression problems
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