Multivariate Methods

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 3

3.1 Multivariate data

Multivariate data

- ullet Parametric methods as seen last week \Rightarrow estimating a variable X
 - In general, we measure several variables $\{X_1, X_2, \dots, X_D\}$ for a data

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N, \quad \mathbf{x}^t = [x_1^t x_2^t \cdots x_D^t]^\top$$

- Naming for variables (X_i)
 - Inputs
 - Features
 - Attributes
- Naming for data (x^t)
 - Observations
 - Examples
 - Instances

Matrix representation:

$$\mathbf{X} = \begin{bmatrix} x_1^1 & x_2^1 & \cdots & x_D^1 \\ x_1^2 & x_2^2 & \cdots & x_D^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^N & x_2^N & \cdots & x_D^N \end{bmatrix}$$

Means and variances, multivariate case

ullet Mean vector μ defined as the mean of each column (each variable) of a set ${f X}$

$$\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \cdots \ \mu_D]^\top$$

- Variance of a variable X_i is σ_i^2 .
- Covariance of two variables X_i and X_j is noted $\sigma_{i,j}$

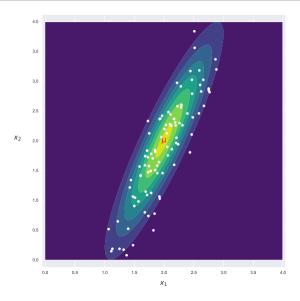
$$\sigma_{i,j} \equiv \operatorname{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] = \mathbb{E}[X_i X_j] - \mu_i \mu_j$$

- ullet Covariance matrix Σ
 - Symmetrical $D \times D$ matrix $(\sigma_{i,j} = \sigma_{j,i})$
 - Positive values on the diagonal $(\sigma_{i,i} = \sigma_i^2)$

$$oldsymbol{\Sigma} \equiv \mathrm{Cov}(\mathbf{X}) = \mathbb{E}\left[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\top}
ight] \ = \mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}
ight] - \boldsymbol{\mu} \boldsymbol{\mu}^{\top}$$

$$oldsymbol{\Sigma} = \left[egin{array}{cccc} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{1,D} \ \sigma_{1,2} & \sigma_2^2 & \cdots & \sigma_{2,D} \ dots & dots & \ddots & dots \ \sigma_{1,D} & \sigma_{2,D} & \cdots & \sigma_D^2 \end{array}
ight]$$

Mean and covariance of samples



Estimator of means and variances, multivariate case

• Estimator of the mean based on maximum likelihood

$$\mathbf{m} = \frac{\sum_{t=1}^{N} \mathbf{x}^t}{N}$$
, where $m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$, $i = 1, \dots, D$

ullet Let **S**, the estimator of the covariance matrix Σ

$$\mathbf{S} = \begin{bmatrix} s_1^2 & s_{1,2} & \cdots & s_{1,D} \\ s_{1,2} & s_2^2 & \cdots & s_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1,D} & s_{2,D} & \cdots & s_D^2 \end{bmatrix} \qquad s_i^2 = \frac{\sum_{t=1}^{N} (x_i^t - m_i)^2}{N} \\ s_{i,j} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

 Developing equations for S is complex, it requires the application of the spectral theorem

Correlation

ullet Correlation between variables X_i and X_j

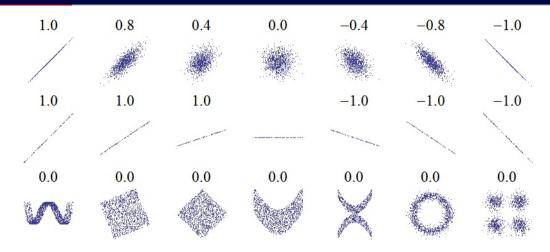
$$Corr(X_i,X_j) \equiv \rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$$

- Standardized statistical measure, $-1 \le \rho_{i,j} \le 1$
- Two independent variables X_i and $X_j \Rightarrow$ zero correlation
- The inverse is, however, not true, even if $\rho_{i,j} = 0$, variables X_i and X_j are not necessarily independent (non-linear relation between variables)
- Estimation of correlation

$$r_{i,j} = \frac{s_{i,j}}{s_i s_j}$$

• Matrix **R** is the matrix of the correlation estimator containing the $r_{i,j}$

Correlation and non-linearity



Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

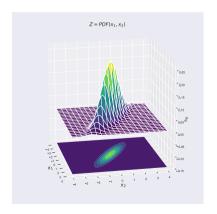
3.2 Multivariate normal distribution

Multivariate normal distribution

ullet Multidimensional normal distribution $\mathcal{N}_D(\mu, \Sigma)$

$$p(\mathsf{x}) = rac{1}{(2\pi)^{0.5D} \left| \mathbf{\Sigma}
ight|^{0.5}} \exp \left[-rac{1}{2} (\mathsf{x} - oldsymbol{\mu})^ op \mathbf{\Sigma}^{-1} (\mathsf{x} - oldsymbol{\mu})
ight]$$

- Mean vector μ : distribution centre
- ullet Normalization by the inverse of the covariance matrix $oldsymbol{\Sigma}$



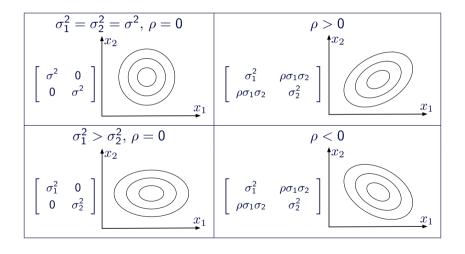
Two-dimensional case

• Two-dimensional normal distribution $(\sigma_{i,j} = \rho \sigma_i \sigma_j)$:

$$oldsymbol{\mu} = \left[egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight], \, oldsymbol{\Sigma} = \left[egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight]$$

- ullet Four possible cases for Σ
 - 1. Diagonal Σ ($\rho=0$) and equal variance for both dimensions (isotropic), $\sigma_1^2=\sigma_2^2=\sigma^2$
 - 2. Diagonal Σ (
 ho=0) and different variances for the two dimensions, $\sigma_1^2
 eq \sigma_2^2$
 - 3. Positive correlation between variables, $\rho > 0$
 - 4. Negative correlation between variables, $\rho < 0$

Two-dimensional case

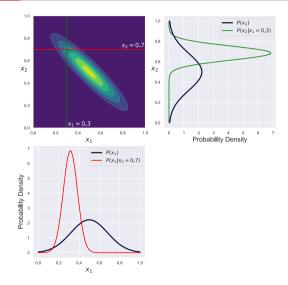


Properties of the multivariate normal distribution

- ullet The value of the determinant $|\Sigma|$ indicates the proximity of samples around μ
 - A low value may indicate high correlation between variables
- ullet Generally, $oldsymbol{\Sigma}$ is a symmetrical positive-definite matrix
 - ullet Otherwise, $oldsymbol{\Sigma}$ is singular and $|oldsymbol{\Sigma}|=0$
 - ⇒ Linear dependence between variables
 - \Rightarrow One of the variables has a variance of 0
- If $\mathbf{x} \sim \mathcal{N}_D(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $x_i \sim \mathcal{N}(\mu_i, \tilde{\sigma}_i^2)$
 - If x_i are independent $(\sigma_{i,j} = 0, \forall i \neq j)$, then $x_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$
- A linear projection defined by W in a space with K dimensions (K < D) also follows a multivariate normal distribution

$$\mathbf{W}^{ op}\mathbf{x} \sim \mathcal{N}_{\mathcal{K}}\left(\mathbf{W}^{ op}oldsymbol{\mu},\!\mathbf{W}^{ op}oldsymbol{\Sigma}\mathbf{W}
ight)$$

Conditional law of multivariate normal distribution



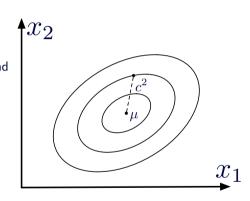
Mahalanobis distance

• Mahalanobis distance

$$D_{M}(\mathsf{x}) = (\mathsf{x} - \boldsymbol{\mu})^{ op} \mathbf{\Sigma}^{-1} (\mathsf{x} - \boldsymbol{\mu})$$

- Distance between the mean vector μ and a point x, weighted by the covariance matrix Σ.
- Contour line corresponds to a constant distance c²
- 1D case

$$\frac{(x-\mu)^2}{\sigma^2} = (x-\mu)(\sigma^2)^{-1}(x-\mu)$$



3.3 Multivariate classification

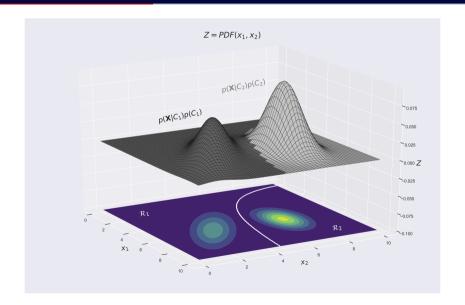
Multivariate classification

ullet Conditional probability density for classes $p(\mathbf{x}|C_i) \sim \mathcal{N}_D(oldsymbol{\mu}_i, oldsymbol{\Sigma}_i)$

$$p(\mathbf{x}|C_i) = \frac{1}{(2\pi)^{0.5D} |\mathbf{\Sigma}_i|^{0.5}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

- Reasons for using normal distribution in multivariate classification
 - Simplicity of the equation for analytical developments
 - Model that describes many natural phenomena accurately
 - ullet Observations are generally slight variations (Σ) of a mean observation (μ)
 - Robust model, allows good approximations
 - However, requires data to be grouped together
 - With several groups, we must use a *mixture distribution*, which is a linear combination of several densities (presented later)

Example of multivariate classification



Discriminant function

Discriminant function with multivariate model

$$h_i(\mathbf{x}) = \log p(\mathbf{x}|C_i) + \log P(C_i)$$

ullet For a normal distribution, $p(\mathbf{x}|C_i) \sim \mathcal{N}_D(\mu_i, \Sigma_i)$

$$h_i(\mathbf{x}) = -\frac{D}{2} \log 2\pi - \frac{1}{2} \log |\mathbf{\Sigma}_i| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \log P(C_i)$$
$$= -\frac{1}{2} \log |\mathbf{\Sigma}_i| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \log P(C_i)$$

Parameters estimate

• Parameters estimate based on maximum likelihood

• Set
$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$$
, with $r_i^t = \begin{cases} 1 & \text{if } \mathbf{x}^t \in C_i \\ 0 & \text{otherwise} \end{cases}$

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}
\mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}
\mathbf{S}_i = \frac{\sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^\top}{\sum_t r_i^t}$$

Quadratic discriminant function

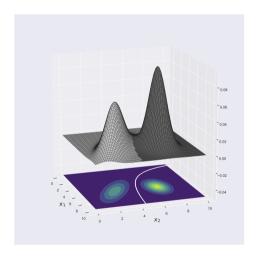
• Include $\hat{P}(C_i)$, \mathbf{m}_i and \mathbf{S}_i into the formula of $h_i(\mathbf{x})$

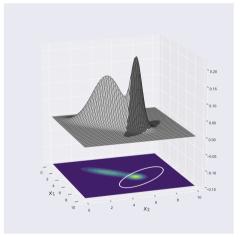
$$h_i(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_i| - \frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^{\top}\mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

• Equivalent formulation

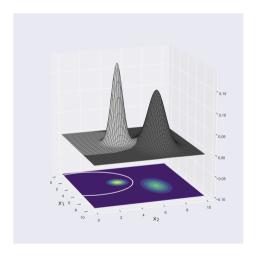
$$\begin{aligned} \mathbf{h}_{i}(\mathbf{x}) &= \mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x} + \mathbf{w}_{i}^{\top} \mathbf{x} + w_{i}^{0} \\ \mathbf{W}_{i} &= -\frac{1}{2} \mathbf{S}_{i}^{-1} \\ \mathbf{w}_{i} &= \mathbf{S}_{i}^{-1} \mathbf{m}_{i} \\ w_{i}^{0} &= -\frac{1}{2} \mathbf{m}_{i}^{\top} \mathbf{S}_{i}^{-1} \mathbf{m}_{i} - \frac{1}{2} \log |\mathbf{S}_{i}| + \log \hat{P}(C_{i}) \end{aligned}$$

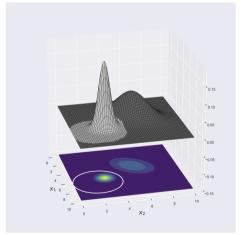
Examples of quadratic discriminant function (1/3)



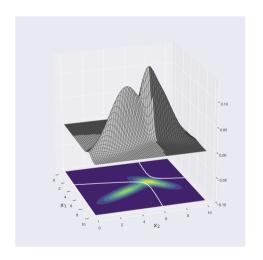


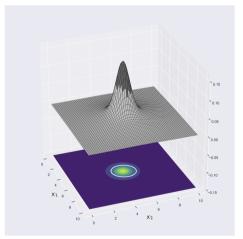
Examples of quadratic discriminant function (2/3)





Examples of quadratic discriminant function (3/3)

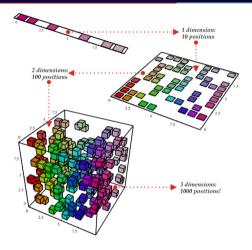




The curse of dimensionality

- The curse of dimensionality
 - The addition of a dimension creates an exponential increase of the mathematical space
 - If 100 points are equidistant from 0.01 in one dimension \Rightarrow 10²⁰ points are needed in 10 dimensions to keep the same sampling density
- High number of parameters to be estimated with quadratic discriminant function
 - $K \times D$ for means and $K \times \frac{D(D+1)}{2}$ for covariance matrices
- With a high dimensionality (large D) and few data (small N), high risk of singular matrices S_i
 - Even if $|\mathbf{S}_i| \neq 0$, a small change can cause a large variation of $\mathbf{S}_i^{-1} \Rightarrow$ instabilities
- Solution: dimensionality reduction by feature selection or projection (seen at the end of the semester)

The curse of dimensionality



Source: Y. Bengio, http://www.iro.umontreal.ca/~bengioy/yoshua_en/research_files/CurseDimensionality.jpg, accessed October 2, 2016.

3.4 Model simplifications for classification

Sharing the covariance matrix

• Simplification 1: sharing the covariance matrix

$$\mathbf{S} = \sum_{t} \hat{P}(C_i) \, \mathbf{S}_i$$

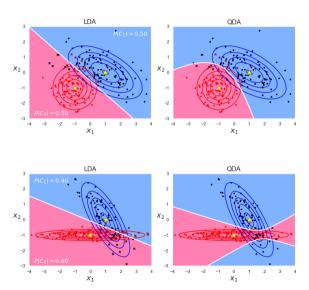
- $K \times D$ parameters for means
- $\frac{D(D+1)}{2}$ parameters for shared covariance matrix
- Corresponding discriminant function

$$h_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^{\top} \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

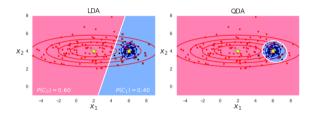
- $\mathbf{x}^{\top}\mathbf{S}^{-1}\mathbf{x}$ common for all $h_i(\mathbf{x})$
- Reformulation as a linear discriminant function

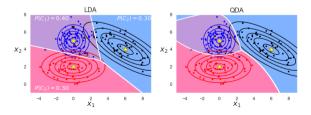
$$\mathbf{h}_i(\mathbf{x}) = \mathbf{w}_i^{\top} \mathbf{x} + w_i^0, \quad \mathbf{w}_i = \mathbf{S}^{-1} \mathbf{m}_i, \quad w_i^0 = -\frac{1}{2} \mathbf{m}_i^{\top} \mathbf{S}^{-1} \mathbf{m}_i + \log \hat{P}(C_i)$$

Linear and quadratic discriminant functions (1/2)



Linear and quadratic discriminant functions (2/2)





Naive Bayes classifier

• Simplification 2: elements out of the diagonal of **S** have a value of 0

$$\mathbf{S} = \left[egin{array}{cccc} s_1^2 & 0 & \cdots & 0 \ 0 & s_2^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & s_D^2 \end{array}
ight]$$

Corresponding discriminant function (naive Bayes classifier)

$$\mathrm{h}_i(\mathbf{x}) = -rac{1}{2}\sum_{i=1}^D \left(rac{x_j-m_{i,j}}{s_j}
ight)^2 + \log \hat{P}(C_i)$$

- Number of parameters for the covariance matrix: D
 - Reduction from a quadratic to a linear order

Nearest mean classifier

- Simplification 3: isotropic covariance matrix, with all variances equal $(\sigma_i = \sigma, \forall i)$
- Reduction from a Mahalanobis distance to a Euclidean distance

$$(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \sigma^{-2} (\mathbf{x} - \boldsymbol{\mu})^{\top} (\mathbf{x} - \boldsymbol{\mu}) = \frac{\|\mathbf{x} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

Corresponding discriminant function

$$h_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2s^2} + \log \hat{P}(C_i) = -\frac{1}{2s^2} \sum_{j=1}^{D} (x_j - m_{i,j})^2 + \log \hat{P}(C_i)$$

- Simplification 4: a priori equal probabilities $(P(C_i) = P(C_j), \forall i,j)$
 - Nearest mean classifier

$$h_i(\mathbf{x}) = -\|\mathbf{x} - \mathbf{m}_i\|^2$$

Nearest mean classifier

$$h_i(\mathbf{x}) = -\|\mathbf{x} - \mathbf{m}_i\|^2$$

$$= -(\mathbf{x} - \mathbf{m}_i)^{\top} (\mathbf{x} - \mathbf{m}_i)$$

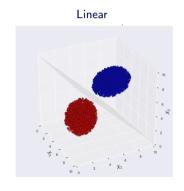
$$= -(\mathbf{x}^{\top} \mathbf{x} - 2\mathbf{m}_i^{\top} \mathbf{x} + \mathbf{m}_i^{\top} \mathbf{m}_i)$$

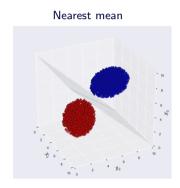
As $\mathbf{x}^{\top}\mathbf{x}$, common $\forall \mathbf{h}_{i}(\mathbf{x})$

$$\mathbf{h}_{i}(\mathbf{x}) = \mathbf{w}_{i}^{\top} \mathbf{x} + w_{i}^{0}$$
$$\mathbf{w}_{i} = \mathbf{m}_{i}$$
$$w_{i}^{0} = -\frac{1}{2} \|\mathbf{m}_{i}\|^{2}$$

3D examples with simplifications

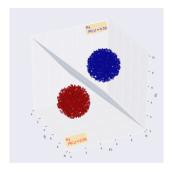
Quadratic $R_2 p(w_2) = 0.50$



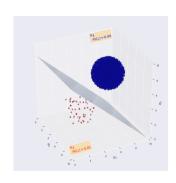


Effect of the a priori probabilities (linear case)

 $P(C_1) = 0.99, P(C_2) = 0.01$

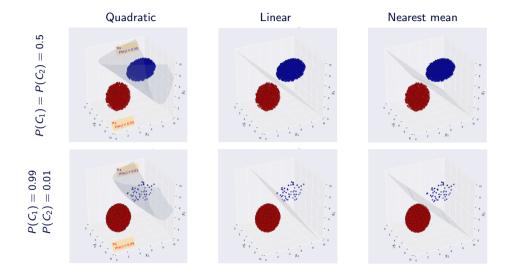


 $P(C_1) = 0.50, P(C_2) = 0.50$



 $P(C_1) = 0.01, P(C_2) = 0.99$

Effect of the a priori probabilities



Summary of variants

Densities	Covariance matrices	Number of parameters
shared Σ , hypersphere densities	$oldsymbol{\Sigma}_i = oldsymbol{\Sigma} = \sigma^2 oldsymbol{I}$	1
(isotropic)		
shared Σ , densities aligned on the	$oldsymbol{\Sigma}_i = oldsymbol{\Sigma}$ and $\sigma_{i,j} = 0$	D
axes		
shared Σ , hyperellipsoidal densities	$\boldsymbol{\Sigma}_i = \boldsymbol{\Sigma}$	$rac{D(D+1)}{2} \ \mathcal{K} rac{D(D+1)}{2}$
different Σ , hyperellipsoidal densi-	Σ_i	$K^{\frac{D(D+1)}{2}}$
ties		

Discriminant analysis with regularization

Rewriting of the covariance matrix

$$\Sigma_i' = \alpha \sigma^2 \mathbf{I} + \beta \Sigma + (1 - \alpha - \beta) \Sigma_i$$

- $\alpha = \beta = 0 \Rightarrow$ quadratic discriminant
- $\alpha=0$ and $\beta=1$ \Rightarrow linear discriminant with shared covariance matrix
- $\alpha=1$ and $\beta=0$ \Rightarrow linear discriminant with shared isotropic covariance matrix (nearest mean classifier if a priori probabilities are equal)
- ullet Variety of classifiers with lpha and eta between these extreme values
- Possible regularization by an optimization criterion taking into account the values of α and β .

3.5 Mixture distribution

Mixture distribution

- Parametric classification with normal distribution: one group per class
 - With several modes in a single class, a normal distribution model is difficult to apply
- Mixture distribution: linear combination of density functions associated with several groups

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|\mathcal{G}_i) P(\mathcal{G}_i)$$

- Groups must be known and identified in the data
- Alternative: use an unsupervised approach (clustering) to learn the groups
- Mixture distribution of components based on a multivariate normal distribution
 - ullet Component density: $(\mathbf{x}|\mathcal{G}_i) \sim \mathcal{N}_D(oldsymbol{\mu}_i, oldsymbol{\Sigma}_i)$
 - Parametrization: $\Phi = \{P(\mathcal{G}_i), \mu_i, \Sigma_i\}_{i=1}^K$

Probabilities for mixture distribution

Mixture distribution

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|\mathcal{G}_i) P(\mathcal{G}_i)$$

• Proportion of the group G_i in the mixture, $P(G_i)$

$$\sum_i P(\mathcal{G}_i) = 1$$

• Probability that **x** belongs to the group \mathcal{G}_i , $P(\mathcal{G}_i|\mathbf{x})$

$$P(G_i|\mathbf{x}) = \frac{P(G_i)p(\mathbf{x}|G_i)}{\sum_j P(G_j)p(\mathbf{x}|G_j)}$$

3.6 Multivariate regression

Multivariate regression

• Model for a multivariate linear regression function

$$r^{t} = h(\mathbf{x}|w_{0}, w_{1}, \dots, w_{D}) + \epsilon = w_{0} + w_{1}x_{1}^{t} + w_{2}x_{2}^{t} + \dots + w_{D}x_{D}^{t} + \epsilon$$

- White Gaussian noise centred at 0, $\epsilon \sim \mathcal{N}(0,\sigma^2)$
- Minimization of the quadratic error (maximum likelihood)

$$E(w_0, w_1, \dots, w_D | \mathcal{X}) = \frac{1}{2} \sum_t (r^t - w_0 - w_1 x_1^t - w_2 x_2^t - \dots - w_D x_D^t)^2$$

Solution based on partial derivatives

$$\frac{\partial E}{\partial w_j} = 0, \, \forall j$$

Normal equations for multivariate regression

$$\begin{array}{rclcrcl} \sum_{t} r^{t} & = & Nw_{0} + w_{1} \sum_{t} x_{1}^{t} + w_{2} \sum_{t} x_{2}^{t} + \cdots + w_{D} \sum_{t} x_{D}^{t} \\ \sum_{t} x_{1}^{t} r^{t} & = & Nw_{0} \sum_{t} x_{1}^{t} + w_{1} \sum_{t} (x_{1}^{t})^{2} + w_{2} \sum_{t} x_{1}^{t} x_{2}^{t} + \cdots + w_{D} \sum_{t} x_{1}^{t} x_{D}^{t} \\ \sum_{t} x_{2}^{t} r^{t} & = & Nw_{0} \sum_{t} x_{2}^{t} + w_{1} \sum_{t} x_{1}^{t} x_{2}^{t} + w_{2} \sum_{t} (x_{2}^{t})^{2} + \cdots + w_{D} \sum_{t} x_{2}^{t} x_{D}^{t} \\ & \vdots \\ \sum_{t} x_{D}^{t} r^{t} & = & Nw_{0} \sum_{t} x_{D}^{t} + w_{1} \sum_{t} x_{1}^{t} x_{D}^{t} + w_{2} \sum_{t} x_{2}^{t} x_{D}^{t} + \cdots + w_{D} \sum_{t} (x_{D}^{t})^{2} \end{array}$$

• Matrix version: $\mathbf{X}^{\top}\mathbf{r} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}$

$$\mathbf{X} = \left[\begin{array}{cccc} 1 & x_1^1 & x_2^1 & \cdots & x_D^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_D^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^N & x_2^N & \cdots & x_D^N \end{array} \right], \, \mathbf{w} = \left[\begin{array}{c} w_0 \\ w_1 \\ \vdots \\ w_D \end{array} \right], \, \mathbf{r} = \left[\begin{array}{c} r^1 \\ r^2 \\ \vdots \\ r^N \end{array} \right]$$

• Solving the system of linear equations

$$\mathbf{w} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{r}$$

Notes on multivariate regression

- Normal equations: polynomials of order 1.
 - Resolution with higher order polynomials is rare, except for low D
- Analysis by inspection of w_i values
 - w_i gives the importance of the variable X_i , it allows to classify the variables by order of importance
 - Remove the variables where $w_i \rightarrow 0$
 - Interesting for dimensionality reduction (will be seen at the end of the semester)
 - Sign of w_i gives an idea of the effect of the variable X_i .
- Multiple output values ⇒ set of independent regression problems