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2.1 Bayes formula



Review of basic statistical concepts

e Random experiment (£): an experiment for which the outcome cannot be
predicted in advance with certainty

e Sample space (U): the set of all possible outcomes or results of an experiment

e Discrete sample space: finite set of possible outcomes
e Continuous sample space: the possible outcomes are not enumerable

e Random event (A): result of a random experiment, subset of the sample space
(AcCU)

e Probability (P(A)): associate a real number representing the application of a
given event (A) related to a random experiment (A C U), satisfying the axioms of
probabilities

1. 0< P(A) <1, VA

2. P(U)=1

3. Suppose the events A;, i = 1,...,n are mutually exclusive (A; N A; =0, Vj # i),
then P (Ul A)) = > 1 P(A)



Probability and inference

Tossing a coin: U = {tail, head}
Random variable X = {0, 1} (0O=head, 1=tail)
e Bernoulli distribution: P(x € X) = (1 — p1)! ™ pf

Set of samples X drawn according to a probability distribution parameterized by
p1 (tail probability)

e Set of N samples: X = {x'}V; with x* € X

, N
_ _#ftails _ i x*
T fttosses N

e Estimate of p; by sampling: p;

Prediction of the next toss xN*t1: if p; > 0.5 then tail, otherwise head

e Example of outcomes: X ={1,1,1,0,1,0,0, 1, 1}

e 6
N
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e Estimation of the probability: p; =



Classification

e Example of credit risk assessment

X1
X2

e Input data: x = , with x; as income and x; the amount of savings

e Possible classes: C € {0, 1} where C =1 denotes an individual at high risk of
default and C = 0 an individual at low risk of default
e If we know P(C|x1,x2) then:
. C=1 if P(C=1lx1,x) > 0.5
e Assign: .
C =0 otherwise
e Equivalent formulation:

o Assign: c=1 if P(C.: 1x1,x2) > P(C = 0|x1,x2)
C =0 otherwise



Conditional probability

e Conditional probability P(E|F): probability that the event E will occur if the

event F has occurred:
P(ENF)

PIEIF) = )

e Since N is commutative:
P(ENF)= P(E|F)P(F)= P(F|E) P(E)

e Bayes formula:
P(F|E) = P(EI‘DF()E’;(F)



Venn diagram and Bayes formula

P(ENF)=P(E|F)P(F)= P(FIE)P(E)=P(FNE) 5



Bayes formula

prior likelihood

o P(O)p(XIC)
)

evidence

Prior probability (P(C)): probability of observing an instance of the class C
e Class likelihood (p(x|C)): likelihood that an observation of the class C is x

Evidence (p(x)): likelihood of observing the data x

Posterior probability (P(C|x)): probability that an observation x belongs to the
class C



Bayes formula

prior likelihood

NN
p(Ci) — PLOP(IC)

evidence

e Sum of prior probabilities: P(C =0)+P(C=1)=1
e Sum of posterior probabilities: P(C =0|x) + P(C =1|x) =1
e Evidence: p(x) = P(C =1)p(x|C =1)+ P(C =0) p(x|C = 0)



Example: Bayes formula

e Vehicle observation
e Probability of observing a car, P(C =1) =0.7
e Probability of observing another vehicle, P(C = 0) = 0.3
e A given vehicle observation x
e Likelihoods of the observation: p(x|C =1) =1.1, p(x|C =0) =0.4

e Evidence
p(x) = p(x|C=1)P(C=1)+p(x|C=0)P(C=0)
= 11-0.7+04-03=0.77+0.12=0.89

e Posterior probabilities
P(C=1)p(x|C=1) 07-11 0.77

P(C=1]x) = = = =0.
(€ =1kx) p(x) 080 o089 080
P(C=0)p(x|C=0) 03-04 0.12
(€ =0lx) p(x) 089 089 O3 )



2.2 Bayesian Decision Theory




Bayes formula with several classes

P(Ci) p(x|G)
K P(Ci) p(x|Ck)

P(Ci|x) =

e P(C)>0et K P(C)=1

e Choose class C; for data x according to C; = arg’rfnax P(Ck|x)
k=1



e Not all decisions have the same impact

e Lending money to a high-risk client versus not lending to a low-risk client

e Medical diagnosis: possible impacts of not detecting a serious illness
e Intrusion detection

e Quantify with a loss function £(«;,C;)

e Perform an action «; while the actual class is C;
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e Expected risk of an action a:

e Action minimizing risk:

o™ = argmin R(ax)
Va

e Modifying the loss function changes the risk

e Modifying the cost associated with a false negative relative to the cost of a false
positive
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Confusion matrix (two classes)

Decision
(07 (6751
o| O | Arp
Actual
ctua G | en 0

e L(aw=1,C =0) = App: cost of a false positive

e L(a=0,C=1)= ApN: cost of a false negative
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Confusion matrix (K classes)

ao al .« .. aK
G| 0 | Ao |- | Ak
Ci | Aot 0 |- | Ak
Ck | Mok | Mk 0

13



Zero-one loss function

e Zero-one loss function:

T
LlarG)=4 O T
1 ifi#j
e Corresponding risk:
R(ailx) Zﬁ i, C) P(Crlx)
ZP Cr|x)
k#£i
= 1-— P(Cix)

e Optimal decision:
o = argmax P(Ck|x)

Q=0
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e For many applications, a bad classification can have a huge impact
e Addition of a reject option in case of doubt, action a1
e Zero-one loss function with reject option:
0 ifi=j
L(aj,CG)=4q N ifi=K+1
1 otherwise
e In that case:

R(ai|x) = Z P(Ck|x) =1 — P(Ci|x)
k£i
K

Rlakslx) = > AP(Clx) = A
k=1
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Optimal decision with reject option

e Optimal decision with reject option:
aK+1_
a* = argmin R(ay|x)

Q=01

e Optimal decision for zero-one loss function with reject option:

K41 if P(Clx) <1-A\Vj=1,... K
@ =9 argmax P(Gj|x) otherwise
aj=ay
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Confusion matrix (K classes and reject option)

(&7} aq aK OK+1
G| 0 | Ao | - | Ako | Ak+10

Ci | ot 0 |- | Ak | Aks11

Ck | Mok | Ak | - 0 | Aks1k
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Discriminant function

. . . e . oK
Discriminant functions for classification: a! = argmaxh;(x")

[ ]
aj=a1
e In the Bayesian case (general): h;(x) = —R(«a;|x)
e Bayesian with zero-one loss function: h;(x) = P(C;|x)
e Ignoring normalization relative to p(x): h;(x) = p(x|G) P(G)
e Decision regions: division of the input space into K regions:

° Rl, . 7'R,K ou R,‘ = {x|h,-(x) = MaXy hk(X)}

e Decision regions are separated by decision boundaries

Two-class case is a dichotomizer, K > 3 classes is a plurichotomizer
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Regions and decision boundaries
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