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2.1 Bayes formula



Review of basic statistical concepts

• Random experiment (E): an experiment for which the outcome cannot be

predicted in advance with certainty
• Sample space (U): the set of all possible outcomes or results of an experiment

• Discrete sample space: finite set of possible outcomes

• Continuous sample space: the possible outcomes are not enumerable

• Random event (A): result of a random experiment, subset of the sample space

(A ⊂ U)
• Probability (P(A)): associate a real number representing the application of a

given event (A) related to a random experiment (A ⊂ U), satisfying the axioms of
probabilities

1. 0 ≤ P(A) ≤ 1, ∀A
2. P(U) = 1

3. Suppose the events Ai , i = 1, . . . ,n are mutually exclusive (Ai ∩ Aj = ∅, ∀j 6= i),

then P
(⋃n

i=1 Ai

)
=
∑n

i=1 P(Ai )
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Probability and inference

• Tossing a coin: U = {tail, head}
• Random variable X = {0, 1} (0=head, 1=tail)

• Bernoulli distribution: P(x ∈ X ) = (1− p1)1−x px1

• Set of samples X drawn according to a probability distribution parameterized by
p1 (tail probability)

• Set of N samples: X = {x t}Nt=1 with x t ∈ X

• Estimate of p1 by sampling: p̂1 = #tails
#tosses =

∑N
i=1 x

t

N

• Prediction of the next toss xN+1: if p̂1 > 0.5 then tail, otherwise head

• Example of outcomes: X = {1, 1, 1, 0, 1, 0, 0, 1, 1}
• Estimation of the probability: p̂1 =

∑N
t=1 x

t

N = 6
9
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Classification

• Example of credit risk assessment

• Input data: x =

[
x1
x2

]
, with x1 as income and x2 the amount of savings

• Possible classes: C ∈ {0, 1} where C = 1 denotes an individual at high risk of

default and C = 0 an individual at low risk of default

• If we know P(C |x1,x2) then:

• Assign:

{
C = 1 if P(C = 1|x1,x2) > 0.5

C = 0 otherwise

• Equivalent formulation:

• Assign:

{
C = 1 if P(C = 1|x1,x2) > P(C = 0|x1,x2)

C = 0 otherwise
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Conditional probability

• Conditional probability P(E |F ): probability that the event E will occur if the

event F has occurred:

P(E |F ) =
P(E ∩ F )

P(F )

• Since ∩ is commutative:

P(E ∩ F ) = P(E |F )P(F ) = P(F |E )P(E )

• Bayes formula:

P(F |E ) =
P(E |F )P(F )

P(E )
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Venn diagram and Bayes formula

E F

E
\

F
P(E ∩ F ) = P(E |F )P(F ) = P(F |E )P(E ) = P(F ∩ E ) 5



Bayes formula

P(C |x)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
P(C )

likelihood︷ ︸︸ ︷
p(x|C )

p(x)︸︷︷︸
evidence

• Prior probability (P(C )): probability of observing an instance of the class C

• Class likelihood (p(x|C )): likelihood that an observation of the class C is x

• Evidence (p(x)): likelihood of observing the data x

• Posterior probability (P(C |x)): probability that an observation x belongs to the

class C
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Bayes formula

P(C |x)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
P(C )

likelihood︷ ︸︸ ︷
p(x|C )

p(x)︸︷︷︸
evidence

• Sum of prior probabilities: P(C = 0) + P(C = 1) = 1

• Sum of posterior probabilities: P(C = 0|x) + P(C = 1|x) = 1

• Evidence: p(x) = P(C = 1) p(x|C = 1) + P(C = 0) p(x|C = 0)
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Example: Bayes formula

• Vehicle observation
• Probability of observing a car, P(C = 1) = 0.7

• Probability of observing another vehicle, P(C = 0) = 0.3

• A given vehicle observation x
• Likelihoods of the observation: p(x|C = 1) = 1.1, p(x|C = 0) = 0.4

• Evidence

p(x) = p(x|C = 1)P(C = 1) + p(x|C = 0)P(C = 0)

= 1.1 · 0.7 + 0.4 · 0.3 = 0.77 + 0.12 = 0.89

• Posterior probabilities

P(C = 1|x) =
P(C = 1) p(x|C = 1)

p(x)
=

0.7 · 1.1
0.89

=
0.77

0.89
= 0.865

P(C = 0|x) =
P(C = 0) p(x|C = 0)

p(x)
=

0.3 · 0.4
0.89

=
0.12

0.89
= 0.134
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2.2 Bayesian Decision Theory



Bayes formula with several classes

P(Ci |x) =
P(Ci ) p(x|Ci )∑K

k=1 P(Ck) p(x|Ck)

• P(Ci ) ≥ 0 et
∑K

i=1 P(Ci ) = 1

• Choose class Ci for data x according to Ci =
K

argmax
k=1

P(Ck |x)
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Loss function

• Not all decisions have the same impact

• Lending money to a high-risk client versus not lending to a low-risk client

• Medical diagnosis: possible impacts of not detecting a serious illness

• Intrusion detection

• Quantify with a loss function L(αi ,Cj)

• Perform an action αi while the actual class is Cj
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Risk

• Expected risk of an action α:

R(α|x) =
K∑

k=1

L(α,Ck)P(Ck |x)

• Action minimizing risk:

α∗ = argmin
∀α

R(α|x)

• Modifying the loss function changes the risk

• Modifying the cost associated with a false negative relative to the cost of a false

positive
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Confusion matrix (two classes)

Decision

α0 α1

Actual
C0 0 λFP

C1 λFN 0

• L(α = 1,C = 0) = λFP: cost of a false positive

• L(α = 0,C = 1) = λFN: cost of a false negative
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Confusion matrix (K classes)

α0 α1 · · · αK

C0 0 λ1,0 · · · λK ,0

C1 λ0,1 0 · · · λK ,1
...

...
...

. . .
...

CK λ0,K λ1,K · · · 0
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Zero-one loss function

• Zero-one loss function:

L(αi ,Cj) =

{
0 if i = j

1 if i 6= j

• Corresponding risk:

R(αi |x) =
K∑

k=1

L(αi ,Ck)P(Ck |x)

=
∑
k 6=i

P(Ck |x)

= 1− P(Ci |x)

• Optimal decision:

α∗ =
αK

argmax
αk=α1

P(Ck |x)
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Reject option

• For many applications, a bad classification can have a huge impact

• Addition of a reject option in case of doubt, action αK+1

• Zero-one loss function with reject option:

L(αi ,Cj) =


0 if i = j

λ if i = K + 1

1 otherwise

• In that case:

R(αi |x) =
∑
k 6=i

P(Ck |x) = 1− P(Ci |x)

R(αK+1|x) =
K∑

k=1

λP(Ck |x) = λ
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Optimal decision with reject option

• Optimal decision with reject option:

α∗ =
αK+1

argmin
αk=α1

R(αk |x)

• Optimal decision for zero-one loss function with reject option:

α∗ =

 αK+1 if P(Cj |x) < 1− λ, ∀j = 1, . . . ,K
αK

argmax
αj=α1

P(Cj |x) otherwise
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Confusion matrix (K classes and reject option)

α0 α1 · · · αK αK+1

C0 0 λ1,0 · · · λK ,0 λK+1,0

C1 λ0,1 0 · · · λK ,1 λK+1,1

...
...

...
. . .

...
...

CK λ0,K λ1,K · · · 0 λK+1,K
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Discriminant function

• Discriminant functions for classification: αt =
αK

argmax
αi=α1

hi (xt)

• In the Bayesian case (general): hi (x) = −R(αi |x)

• Bayesian with zero-one loss function: hi (x) = P(Ci |x)

• Ignoring normalization relative to p(x): hi (x) = p(x|Ci )P(Ci )

• Decision regions: division of the input space into K regions:

• R1, . . . ,RK où Ri = {x|hi (x) = max∀k hk(x)}
• Decision regions are separated by decision boundaries

• Two-class case is a dichotomizer, K ≥ 3 classes is a plurichotomizer
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Regions and decision boundaries
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