Bayesian decision theory

Introduction to Machine Learning - GIF-7015
Professor: Christian Gagné
Week 2
2.1 Bayes formula

Review of basic statistical concepts

- Random experiment (\mathcal{E}) : an experiment for which the outcome cannot be predicted in advance with certainty
- Sample space (U) : the set of all possible outcomes or results of an experiment
- Discrete sample space: finite set of possible outcomes
- Continuous sample space: the possible outcomes are not enumerable
- Random event (A) : result of a random experiment, subset of the sample space $(A \subset U)$
- Probability $(P(A))$: associate a real number representing the application of a given event (A) related to a random experiment $(A \subset U)$, satisfying the axioms of probabilities

1. $0 \leq P(A) \leq 1, \forall A$
2. $P(U)=1$
3. Suppose the events $A_{i}, i=1, \ldots, n$ are mutually exclusive $\left(A_{i} \cap A_{j}=\emptyset, \forall j \neq i\right)$, then $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$

Probability and inference

- Tossing a coin: $U=\{$ tail, head $\}$
- Random variable $X=\{0,1\}$ ($0=$ head, $1=$ tail $)$
- Bernoulli distribution: $P(x \in X)=\left(1-p_{1}\right)^{1-x} p_{1}^{x}$
- Set of samples \mathbf{X} drawn according to a probability distribution parameterized by p_{1} (tail probability)
- Set of N samples: $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$ with $x^{t} \in X$
- Estimate of p_{1} by sampling: $\hat{p}_{1}=\frac{\# \text { tails }}{\# \text { tosses }}=\frac{\sum_{i=1}^{N} x^{t}}{N}$
- Prediction of the next toss x^{N+1} : if $\hat{p}_{1}>0.5$ then tail, otherwise head
- Example of outcomes: $\mathbf{X}=\{1,1,1,0,1,0,0,1,1\}$
- Estimation of the probability: $\hat{p}_{1}=\frac{\sum_{t=1}^{N} x^{t}}{N}=\frac{6}{9}$

Classification

- Example of credit risk assessment
- Input data: $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, with x_{1} as income and x_{2} the amount of savings
- Possible classes: $C \in\{0,1\}$ where $C=1$ denotes an individual at high risk of default and $C=0$ an individual at low risk of default
- If we know $P\left(C \mid x_{1}, x_{2}\right)$ then:
- Assign: $\begin{cases}C=1 & \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>0.5 \\ C=0 & \text { otherwise }\end{cases}$
- Equivalent formulation:
- Assign: $\begin{cases}C=1 & \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>P\left(C=0 \mid x_{1}, x_{2}\right) \\ C=0 & \text { otherwise }\end{cases}$

Conditional probability

- Conditional probability $P(E \mid F)$: probability that the event E will occur if the event F has occurred:

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

- Since \cap is commutative:

$$
P(E \cap F)=P(E \mid F) P(F)=P(F \mid E) P(E)
$$

- Bayes formula:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Venn diagram and Bayes formula

Bayes formula

$$
\underbrace{P(C \mid \mathbf{x})}_{\text {posterior }}=\frac{\overbrace{P(C)}^{\text {prior }} \overbrace{p(\mathbf{x} \mid C)}^{\text {likelihood }}}{\underbrace{p(\mathbf{x})}_{\text {evidence }}}
$$

- Prior probability $(P(C))$: probability of observing an instance of the class C
- Class likelihood $(p(\mathbf{x} \mid C))$: likelihood that an observation of the class C is \mathbf{x}
- Evidence $(p(\mathbf{x}))$: likelihood of observing the data \mathbf{x}
- Posterior probability $(P(C \mid \mathbf{x}))$: probability that an observation \mathbf{x} belongs to the class C

Bayes formula

$$
\underbrace{P(C \mid \mathbf{x})}_{\text {posterior }}=\frac{\overbrace{P(C)}^{P(\mathbf{x} \mid C)}}{\text { prior }}
$$

- Sum of prior probabilities: $P(C=0)+P(C=1)=1$
- Sum of posterior probabilities: $P(C=0 \mid \mathbf{x})+P(C=1 \mid \mathbf{x})=1$
- Evidence: $p(\mathbf{x})=P(C=1) p(\mathbf{x} \mid C=1)+P(C=0) p(\mathbf{x} \mid C=0)$

Example: Bayes formula

- Vehicle observation
- Probability of observing a car, $P(C=1)=0.7$
- Probability of observing another vehicle, $P(C=0)=0.3$
- A given vehicle observation \mathbf{x}
- Likelihoods of the observation: $p(\mathbf{x} \mid C=1)=1.1, p(\mathbf{x} \mid C=0)=0.4$
- Evidence

$$
\begin{aligned}
p(\mathbf{x}) & =p(\mathbf{x} \mid C=1) P(C=1)+p(\mathbf{x} \mid C=0) P(C=0) \\
& =1.1 \cdot 0.7+0.4 \cdot 0.3=0.77+0.12=0.89
\end{aligned}
$$

- Posterior probabilities

$$
\begin{aligned}
& P(C=1 \mid \mathbf{x})=\frac{P(C=1) p(\mathbf{x} \mid C=1)}{p(\mathbf{x})}=\frac{0.7 \cdot 1.1}{0.89}=\frac{0.77}{0.89}=0.865 \\
& P(C=0 \mid \mathbf{x})=\frac{P(C=0) p(\mathbf{x} \mid C=0)}{p(\mathbf{x})}=\frac{0.3 \cdot 0.4}{0.89}=\frac{0.12}{0.89}=0.134
\end{aligned}
$$

2.2 Bayesian Decision Theory

Bayes formula with several classes

$$
P\left(C_{i} \mid \mathbf{x}\right)=\frac{P\left(C_{i}\right) p\left(\mathbf{x} \mid C_{i}\right)}{\sum_{k=1}^{K} P\left(C_{k}\right) p\left(\mathbf{x} \mid C_{k}\right)}
$$

- $P\left(C_{i}\right) \geq 0$ et $\sum_{i=1}^{K} P\left(C_{i}\right)=1$
- Choose class C_{i} for data \mathbf{x} according to $C_{i}=\stackrel{K}{\operatorname{argmax}} P\left(C_{k} \mid \mathbf{x}\right)$

$$
k=1
$$

Loss function

- Not all decisions have the same impact
- Lending money to a high-risk client versus not lending to a low-risk client
- Medical diagnosis: possible impacts of not detecting a serious illness
- Intrusion detection
- Quantify with a loss function $\mathcal{L}\left(\alpha_{i}, C_{j}\right)$
- Perform an action α_{i} while the actual class is C_{j}

Risk

- Expected risk of an action α :

$$
R(\alpha \mid \mathbf{x})=\sum_{k=1}^{K} \mathcal{L}\left(\alpha, C_{k}\right) P\left(C_{k} \mid \mathbf{x}\right)
$$

- Action minimizing risk:

$$
\alpha^{*}=\underset{\forall \alpha}{\operatorname{argmin}} R(\alpha \mid \mathbf{x})
$$

- Modifying the loss function changes the risk
- Modifying the cost associated with a false negative relative to the cost of a false positive

Confusion matrix (two classes)

		Decision	
		α_{0}	α_{1}
Actual	C_{0}	0	λ_{FP}
	C_{1}	λ_{FN}	0

- $\mathcal{L}(\alpha=1, C=0)=\lambda_{\mathrm{FP}}$: cost of a false positive
- $\mathcal{L}(\alpha=0, C=1)=\lambda_{\mathrm{FN}}$: cost of a false negative

Confusion matrix (K classes)

	α_{0}	α_{1}	\cdots	α_{K}
C_{0}	0	$\lambda_{1,0}$	\cdots	$\lambda_{K, 0}$
C_{1}	$\lambda_{0,1}$	0	\cdots	$\lambda_{K, 1}$
\vdots	\vdots	\vdots	\ddots	\vdots
C_{K}	$\lambda_{0, K}$	$\lambda_{1, K}$	\cdots	0

Zero-one loss function

- Zero-one loss function:

$$
\mathcal{L}\left(\alpha_{i}, C_{j}\right)= \begin{cases}0 & \text { if } i=j \\ 1 & \text { if } i \neq j\end{cases}
$$

- Corresponding risk:

$$
\begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{k=1}^{K} \mathcal{L}\left(\alpha_{i}, C_{k}\right) P\left(C_{k} \mid \mathbf{x}\right) \\
& =\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right) \\
& =1-P\left(C_{i} \mid \mathbf{x}\right)
\end{aligned}
$$

- Optimal decision:

$$
\alpha^{*}=\underset{\alpha_{k}=\alpha_{1}}{\arg \operatorname{\alpha m}_{k}} P\left(C_{k} \mid \mathbf{x}\right)
$$

Reject option

- For many applications, a bad classification can have a huge impact
- Addition of a reject option in case of doubt, action α_{K+1}
- Zero-one loss function with reject option:

$$
\mathcal{L}\left(\alpha_{i}, C_{j}\right)= \begin{cases}0 & \text { if } i=j \\ \lambda & \text { if } i=K+1 \\ 1 & \text { otherwise }\end{cases}
$$

- In that case:

$$
\begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right)=1-P\left(C_{i} \mid \mathbf{x}\right) \\
R\left(\alpha_{K+1} \mid \mathbf{x}\right) & =\sum_{k=1}^{K} \lambda P\left(C_{k} \mid \mathbf{x}\right)=\lambda
\end{aligned}
$$

Optimal decision with reject option

- Optimal decision with reject option:

$$
\alpha^{*}=\underset{\alpha_{k}=\alpha_{1}}{\alpha_{K+1}} R\left(\alpha_{k} \mid \mathbf{x}\right)
$$

- Optimal decision for zero-one loss function with reject option:

$$
\alpha^{*}=\left\{\begin{array}{cc}
\alpha_{K+1} & \text { if } P\left(C_{j} \mid \mathbf{x}\right)<1-\lambda, \forall j=1, \ldots, K \\
\underset{\alpha_{j}=\alpha_{1}}{\alpha_{K}} \underset{\alpha_{K}}{\arg } P\left(C_{j} \mid \mathbf{x}\right) & \text { otherwise }
\end{array}\right.
$$

Confusion matrix (K classes and reject option)

	α_{0}	α_{1}	\cdots	α_{K}	α_{K+1}
C_{0}	0	$\lambda_{1,0}$	\cdots	$\lambda_{K, 0}$	$\lambda_{K+1,0}$
C_{1}	$\lambda_{0,1}$	0	\cdots	$\lambda_{K, 1}$	$\lambda_{K+1,1}$
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
C_{K}	$\lambda_{0, K}$	$\lambda_{1, K}$	\cdots	0	$\lambda_{K+1, K}$

Discriminant function

- Discriminant functions for classification: $\alpha^{t}=\underset{\alpha_{i}=\alpha_{1}}{\underset{\alpha \kappa}{\alpha \kappa}} \mathrm{a}_{i}\left(\mathbf{x}^{t}\right)$
- In the Bayesian case (general): $\mathrm{h}_{i}(\mathbf{x})=-R\left(\alpha_{i} \mid \mathbf{x}\right)$
- Bayesian with zero-one loss function: $\mathrm{h}_{i}(\mathbf{x})=P\left(C_{i} \mid \mathbf{x}\right)$
- Ignoring normalization relative to $p(\mathbf{x}): \mathrm{h}_{i}(\mathbf{x})=p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)$
- Decision regions: division of the input space into K regions:
- $\mathcal{R}_{1}, \ldots, \mathcal{R}_{K}$ où $\mathcal{R}_{i}=\left\{\mathbf{x} \mid \mathrm{h}_{i}(\mathbf{x})=\max _{\forall k} \mathrm{~h}_{k}(\mathbf{x})\right\}$
- Decision regions are separated by decision boundaries
- Two-class case is a dichotomizer, $K \geq 3$ classes is a plurichotomizer

Regions and decision boundaries

