Course Overview

Introduction to Machine Learning – GIF-7015 Professor: Christian Gagné

Week 1

Introduction à l'apprentissage automatique

- GIF-4101: Optional course in computer engineering, computer science, statistic, mathematic-informatic, software engineering, mechanical engineering, geomatics engineering, etc.
 - Requirements
 - STT-2920 Probabilités pour ingénieurs (or equivalent)
 - MAT-2930 Algèbre linéaire appliqué (or equivalent)
- GIF-7005: graduate course, professional Master's in Computer Science Artificial Intelligence, Master's and PhD in Electrical Engineering, Computer Science
 - Open to students from other Master's and PhD programs (sciences and engineering)
 - No official requirements, but must have basic knowledge in:
 - Linear algebra
 - Probability and statistics
 - Calculus
 - Algorithms and programming

Introduction to Machine Learning

- GIF-7015: official English version of GIF-7005 (new this year)
 - Slides and video capsules available in English
 - Howeworks, quizzes and exam provided in English
 - Bilingual text in monPortail (when possible)
 - Discussions on PAX forum in both languages
- In-class discussions (Wednesday morning) can be in English
 - By default, explanations will be given in French, but I will answer in the language the questions are asked
 - Do not hesitate to ask for repeating an answer in English when you do not get the French explanations
- Everything else is the same than GIF-7005

- Theoretical content presented as video capsules
 - Detailled presentation of content in slides
 - Video capsules presenting the content every week
- Weekly discussions in hybrid synchrone mode, Wednesday from 8:30 to 9:45 AM
 - In-person at the VCH-3820 (106 seats available)
 - Simultaneous broadcasting on Zoom, with session recording for later listening
 - Explanations, technical presentations, questions and answers

Evaluations

- Five quizzes at the end of Wednesday sessions (9:45-10:30 AM), on the content of the 2-3 last weeks
- One written exam on theoretical content and mathematical developments (November 9 in the evening)

	Date	Heure	Pond.	Format	
Quiz 1	September 28, 2022	9:45-10:30 AM	4 %	Online objective questionnaire	
Quiz 2	October 12, 2022	9:45-10:30 AM	4 %	Online objective questionnaire	
Quiz 3	October 26, 2022	9:45-10:30 AM	4 %	Online objective questionnaire	
Quiz 4	November 16, 2022	9:45-10:30 AM	4 %	Online objective questionnaire	
Quiz 5	November 30, 2022	9:45-10:30 AM	4 %	Online objective questionnaire	
Exam	November 9, 2022	6:30-8:20 PM	20 %	Paper questionnaire with answers to	
				develop	

Practical Exercises

- Five homeworks done in the PAX environment (Jupyter notebooks)
 - Undergraduate: homeworks in team of 2 students
 - Graduate students: individual homeworks
- Project on open topics
 - Teams of 3-5 students (mixing between the groups is allowed)
 - Presentation during a poster session, on December 21 and 22 in the morning
- Programming done on Python with scikit-learn and PyTorch

Task	Date	Hour	Weighting
Homework 1	October 7, 2022	12:00	8 %
Homework 2	October 21, 2022	12:00	8 %
Homework 3	November 11, 2022	12:00	8 %
Homework 4	November 25, 2022	12:00	8 %
Homework 5	December 9, 2022	12:00	8 %
Project	December 21-22, 2022	morning	20 %

• GIF-4101 (undergraduates): pass at 50 %

A+:	[100, 90]	A:]90, 85]	A-:]85,80]
B+:]80, 76]	B:]76,72]	B-:]72,68]
C+:]68, 64]	C:]64,60]	C-:]60, 56]
D+:]56, 53]	D:]53, 50]	E:]50,0]

- GIF-7005 and GIF-7015 (graduates): pass at $60\ \%$

A+:	[100, 90]	A:]90, 85]	A-:]85, 80]
B+:]80, 76]	B:]76, 72]	B-:]72, 68]
C+:]68, 64]	C:]64,60]	E:] 60, 0]

- Introduction (2h): types of learning; optimization; regularization; generalization; methodology.
- **Parametric methods (6h)**: discriminant functions; Bayes' theorem; parametric methods; maximum likelihood estimation; bias/variance trade-off; multivariate methods; mixture density; linear regression; multivariate regression.
- Nonparametric methods (3h): density functions; kernel density estimation; nearest neighbor ranking; distance measures.
- Linear discriminants (3h): gradient descent; multi-class separation; Perceptron algorithm; least squares method; logistic regression.
- Kernel methods (3h): kernel functions; geometric margin maximization; support vector machines; examples of other kernel methods.
- Multilayer Perceptron (3h): neural network model; error backpropagation algorithm.

- Deep learning (6h): learning representations; techniques for learning deep networks; examples of applications.
- Ensemble methods (3h): majority voting; error correction codes; expert mixtures; bagging; boosting; decision trees; random forests.
- Model preprocessing and configuration (3h): principal component analysis; greedy forward/backward feature selection; heterogeneous data; missing variables; imputation; cross validation; hyper-parameter optimization.
- **Clustering (3h)**: K-means algorithm; expectation-maximization algorithm; hierarchical clustering; variety learning; multidimensional positioning.
- Design and analysis of learning experiments (3h): design of experiments; confusion matrix; ROC curves; Bootstrap; error estimation; statistical tests; comparison of algorithms.

Sources

- Several references available for further study
 - No book is required
 - Most of the references are available in digital format
- Ethem Alpaydin. Introduction to Machine Learning. 4th edition, MIT press, 2020.
- Christopher M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006. https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
- Trevor Hastie, Robert Tibshirani et Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. 2nd edition, Springer, 2009. https://web.stanford.edu/~hastie/ElemStatLearn/
- Ian Goodfellow, Yoshua Bengio et Aaron Courville. Deep Learning. MIT press, 2016. http://www.deeplearningbook.org/
- Andriy Burkov. *The Hundred-Page Machine Learning Book en français*. 2019. http://themlbook.com/wiki/doku.php

- Name: Christian Gagné
- Office: PLT-1138-F
- Email: christian.gagne@gel.ulaval.ca
- Web: https://vision.gel.ulaval.ca/~cgagne
- Course assistance:
 - Questions and discussions of general interest on the subject matter and evaluations: PAX course forum
 - More specific or personal considerations: email the professor

Web sites

- monPortail site: https://sitescours.monportail.ulaval.ca/ena/site/accueil?idSite=146163
 - Course overview
 - Slides and video capsules
 - Online quizzes
 - Grades for homeworks and exams
- PAX's website: https://pax.ulaval.ca/GIF-4101-7005/A22/
 - Homeworks (Jupyter notebook)
 - Discussion forum
- YouTube channel:

https://www.youtube.com/channel/UCkMXqYnOzhIlRseUOgq8_Xw

• Video capsules