Machine Learning

Introduction to Machine Learning – GIF-7015

Professor: Christian Gagné

Week 1

- Machine learning consists in using computers in order to **optimize** an information processing **model** that treats data with regards to some **performance criteria** based on **observations**, whether from examples or past experiences.
- When we know the right model to use, there is no need to do learning!
- Machine learning is mostly useful when:
 - We lack the expertise for a specific task (e.g. a robot navigating on Mars)
 - We have an expertise that cannot be explained because it's implicit (e.g. face recognition)
 - The solutions to the problem are changing over time (e.g. packets routing)
 - The solutions must be personalized (e.g. biometrics)

- A credit business should automatically estimate the risk factor of its customers.
- Available data: client's income (variable x_1) and client's savings (variable x_2)
- Database filled of previous clients' data: high-risk clients (in red circles) and low-risk clients (in green stars)

Example

If $x_1 > 0.32$ and $x_2 > 0.27$ then low-risk else high-risk

- Objective: infer a general treatment model from specific observations
 - The inferred model must be a good and useful approximation of the observations
- The observations are available in sufficient quantities at an inexpensive cost; knowledge is expensive and rare
- Example: linking consumer transactions to their respective consumption behaviour.
 - Suggestions of similar items on Amazon (books, music), Netflix (movies), etc.

- Optimize the model on the observations with respect to the performance criteria.
- Statistic's perspective: inference from samples
- **Computer science's perspective**: implement algorithms and create efficient representations in order to build and evaluate models
- Engineering's perspective: solve problems without having to manually specify or specialize the models

- Analysis of a grocery cart
 - P(Y|X) is the probability that a client who buys a product X also buys Y, where X and Y are products or services
- Example: The probability that "beer" is selected knowing that "chips" already is: P(chips|beer) = 0.7

- Supervised learning
 - Objective: learn a projection between the input observations X and the associated Y output values
- Mathematical modelling
 - $y = h(x|\theta)$
 - $h(\cdot)$: general function of the model
 - θ : model's parameter

Supervised learning schema

Classification

- Y is discrete and corresponds to the class labels
- $h(\cdot)$ is a discriminating function

Classification application

- Pattern recognition
 - Objects recognition: recognize objects types that are present in an image even if the position or the pose of the objects are varying
 - Handwritten character recognition: recognize the characters despite the different styles of writing
 - Speech recognition: Time dependence of information, use valid words/structure dictionaries
- Natural language processing
- Medical diagnostic assistance
- Drugs discovery
- Biometrics
- Etc.

Objects recognition

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Taken from A. Krizhevsky, I. Sutskever and G.E. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems, 2012.

Characters recognition

Regression

- Y is a real value
- $h(\cdot)$ is the regression function
- Example: prediction of the sale price of a used car based on the mileage travelled
 - Observations: mileage travelled (x)
 - Prediction: Sale price (y)
- Values prediction application
 - Finance and insurance
 - Natural phenomena (e.g. weather)
 - Offer and demand
- Risk and uncertainty assessment

- Unlike supervised learning, there are no output values
- Objective: discover regularities in the observations
 - Clustering: discover clusters of similar observations
- Applications
 - Segmentation of the users in a purchasing database
 - Bioinformatic: discover patterns in DNA
 - Image segmentation: define coherent regions of images

Unsupervised learning schema

- Learn a policy: a state to action mapping that leads to a reward
- The learning is not supervised; a reward is given, but with a delay
- Problem of credit assignment: which sequence of actions has led to a reward?
- Applications
 - Games, with one or many players
 - Robotic: navigation within an environment
 - Agents: decision-making

Reinforcement learning schema

- UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
- Kaggle
 - Challenges: https://www.kaggle.com/competitions
 - Databases: https://www.kaggle.com/datasets
- ImageNet: http://www.image-net.org/
- COCO (Common Objects in Context): http://cocodataset.org/
- Open data
 - USA: https://www.data.gov/
 - Europe: http://data.europa.eu/euodp/fr/data/
 - Canada: http://ouvert.canada.ca/fr/donnees-ouvertes
 - Quebec: https://www.donneesquebec.ca